Database
BASIC REAL AND COMPLEX FUNCTIONS
Polynomials
Elementary properties of complex polynomials
coeaddlem
Next ⟩
coemullem
Metamath Proof Explorer
Ascii
Unicode
Theorem
coeaddlem
Description:
Lemma for
coeadd
and
dgradd
.
(Contributed by
Mario Carneiro
, 24-Jul-2014)
Ref
Expression
Hypotheses
coefv0.1
⊢
A
=
coeff
F
coeadd.2
⊢
B
=
coeff
G
coeadd.3
⊢
M
=
deg
F
coeadd.4
⊢
N
=
deg
G
Assertion
coeaddlem
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
coeff
F
+
f
G
=
A
+
f
B
∧
deg
F
+
f
G
≤
if
M
≤
N
N
M
Proof
Step
Hyp
Ref
Expression
1
coefv0.1
⊢
A
=
coeff
F
2
coeadd.2
⊢
B
=
coeff
G
3
coeadd.3
⊢
M
=
deg
F
4
coeadd.4
⊢
N
=
deg
G
5
plyaddcl
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
F
+
f
G
∈
Poly
ℂ
6
dgrcl
⊢
G
∈
Poly
S
→
deg
G
∈
ℕ
0
7
4
6
eqeltrid
⊢
G
∈
Poly
S
→
N
∈
ℕ
0
8
7
adantl
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
N
∈
ℕ
0
9
dgrcl
⊢
F
∈
Poly
S
→
deg
F
∈
ℕ
0
10
3
9
eqeltrid
⊢
F
∈
Poly
S
→
M
∈
ℕ
0
11
10
adantr
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
M
∈
ℕ
0
12
8
11
ifcld
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
if
M
≤
N
N
M
∈
ℕ
0
13
addcl
⊢
x
∈
ℂ
∧
y
∈
ℂ
→
x
+
y
∈
ℂ
14
13
adantl
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
x
∈
ℂ
∧
y
∈
ℂ
→
x
+
y
∈
ℂ
15
1
coef3
⊢
F
∈
Poly
S
→
A
:
ℕ
0
⟶
ℂ
16
15
adantr
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
A
:
ℕ
0
⟶
ℂ
17
2
coef3
⊢
G
∈
Poly
S
→
B
:
ℕ
0
⟶
ℂ
18
17
adantl
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
B
:
ℕ
0
⟶
ℂ
19
nn0ex
⊢
ℕ
0
∈
V
20
19
a1i
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
ℕ
0
∈
V
21
inidm
⊢
ℕ
0
∩
ℕ
0
=
ℕ
0
22
14
16
18
20
20
21
off
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
A
+
f
B
:
ℕ
0
⟶
ℂ
23
oveq12
⊢
A
k
=
0
∧
B
k
=
0
→
A
k
+
B
k
=
0
+
0
24
00id
⊢
0
+
0
=
0
25
23
24
eqtrdi
⊢
A
k
=
0
∧
B
k
=
0
→
A
k
+
B
k
=
0
26
16
ffnd
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
A
Fn
ℕ
0
27
18
ffnd
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
B
Fn
ℕ
0
28
eqidd
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
A
k
=
A
k
29
eqidd
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
B
k
=
B
k
30
26
27
20
20
21
28
29
ofval
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
A
+
f
B
k
=
A
k
+
B
k
31
30
eqeq1d
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
A
+
f
B
k
=
0
↔
A
k
+
B
k
=
0
32
25
31
imbitrrid
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
A
k
=
0
∧
B
k
=
0
→
A
+
f
B
k
=
0
33
32
necon3ad
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
A
+
f
B
k
≠
0
→
¬
A
k
=
0
∧
B
k
=
0
34
neorian
⊢
A
k
≠
0
∨
B
k
≠
0
↔
¬
A
k
=
0
∧
B
k
=
0
35
33
34
syl6ibr
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
A
+
f
B
k
≠
0
→
A
k
≠
0
∨
B
k
≠
0
36
1
3
dgrub2
⊢
F
∈
Poly
S
→
A
ℤ
≥
M
+
1
=
0
37
36
adantr
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
A
ℤ
≥
M
+
1
=
0
38
plyco0
⊢
M
∈
ℕ
0
∧
A
:
ℕ
0
⟶
ℂ
→
A
ℤ
≥
M
+
1
=
0
↔
∀
k
∈
ℕ
0
A
k
≠
0
→
k
≤
M
39
11
16
38
syl2anc
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
A
ℤ
≥
M
+
1
=
0
↔
∀
k
∈
ℕ
0
A
k
≠
0
→
k
≤
M
40
37
39
mpbid
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
∀
k
∈
ℕ
0
A
k
≠
0
→
k
≤
M
41
40
r19.21bi
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
A
k
≠
0
→
k
≤
M
42
11
adantr
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
M
∈
ℕ
0
43
42
nn0red
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
M
∈
ℝ
44
8
adantr
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
N
∈
ℕ
0
45
44
nn0red
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
N
∈
ℝ
46
max1
⊢
M
∈
ℝ
∧
N
∈
ℝ
→
M
≤
if
M
≤
N
N
M
47
43
45
46
syl2anc
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
M
≤
if
M
≤
N
N
M
48
nn0re
⊢
k
∈
ℕ
0
→
k
∈
ℝ
49
48
adantl
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
k
∈
ℝ
50
12
adantr
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
if
M
≤
N
N
M
∈
ℕ
0
51
50
nn0red
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
if
M
≤
N
N
M
∈
ℝ
52
letr
⊢
k
∈
ℝ
∧
M
∈
ℝ
∧
if
M
≤
N
N
M
∈
ℝ
→
k
≤
M
∧
M
≤
if
M
≤
N
N
M
→
k
≤
if
M
≤
N
N
M
53
49
43
51
52
syl3anc
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
k
≤
M
∧
M
≤
if
M
≤
N
N
M
→
k
≤
if
M
≤
N
N
M
54
47
53
mpan2d
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
k
≤
M
→
k
≤
if
M
≤
N
N
M
55
41
54
syld
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
A
k
≠
0
→
k
≤
if
M
≤
N
N
M
56
2
4
dgrub2
⊢
G
∈
Poly
S
→
B
ℤ
≥
N
+
1
=
0
57
56
adantl
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
B
ℤ
≥
N
+
1
=
0
58
plyco0
⊢
N
∈
ℕ
0
∧
B
:
ℕ
0
⟶
ℂ
→
B
ℤ
≥
N
+
1
=
0
↔
∀
k
∈
ℕ
0
B
k
≠
0
→
k
≤
N
59
8
18
58
syl2anc
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
B
ℤ
≥
N
+
1
=
0
↔
∀
k
∈
ℕ
0
B
k
≠
0
→
k
≤
N
60
57
59
mpbid
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
∀
k
∈
ℕ
0
B
k
≠
0
→
k
≤
N
61
60
r19.21bi
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
B
k
≠
0
→
k
≤
N
62
max2
⊢
M
∈
ℝ
∧
N
∈
ℝ
→
N
≤
if
M
≤
N
N
M
63
43
45
62
syl2anc
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
N
≤
if
M
≤
N
N
M
64
letr
⊢
k
∈
ℝ
∧
N
∈
ℝ
∧
if
M
≤
N
N
M
∈
ℝ
→
k
≤
N
∧
N
≤
if
M
≤
N
N
M
→
k
≤
if
M
≤
N
N
M
65
49
45
51
64
syl3anc
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
k
≤
N
∧
N
≤
if
M
≤
N
N
M
→
k
≤
if
M
≤
N
N
M
66
63
65
mpan2d
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
k
≤
N
→
k
≤
if
M
≤
N
N
M
67
61
66
syld
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
B
k
≠
0
→
k
≤
if
M
≤
N
N
M
68
55
67
jaod
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
A
k
≠
0
∨
B
k
≠
0
→
k
≤
if
M
≤
N
N
M
69
35
68
syld
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
ℕ
0
→
A
+
f
B
k
≠
0
→
k
≤
if
M
≤
N
N
M
70
69
ralrimiva
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
∀
k
∈
ℕ
0
A
+
f
B
k
≠
0
→
k
≤
if
M
≤
N
N
M
71
plyco0
⊢
if
M
≤
N
N
M
∈
ℕ
0
∧
A
+
f
B
:
ℕ
0
⟶
ℂ
→
A
+
f
B
ℤ
≥
if
M
≤
N
N
M
+
1
=
0
↔
∀
k
∈
ℕ
0
A
+
f
B
k
≠
0
→
k
≤
if
M
≤
N
N
M
72
12
22
71
syl2anc
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
A
+
f
B
ℤ
≥
if
M
≤
N
N
M
+
1
=
0
↔
∀
k
∈
ℕ
0
A
+
f
B
k
≠
0
→
k
≤
if
M
≤
N
N
M
73
70
72
mpbird
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
A
+
f
B
ℤ
≥
if
M
≤
N
N
M
+
1
=
0
74
simpl
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
F
∈
Poly
S
75
simpr
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
G
∈
Poly
S
76
1
3
coeid
⊢
F
∈
Poly
S
→
F
=
z
∈
ℂ
⟼
∑
k
=
0
M
A
k
z
k
77
76
adantr
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
F
=
z
∈
ℂ
⟼
∑
k
=
0
M
A
k
z
k
78
2
4
coeid
⊢
G
∈
Poly
S
→
G
=
z
∈
ℂ
⟼
∑
k
=
0
N
B
k
z
k
79
78
adantl
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
G
=
z
∈
ℂ
⟼
∑
k
=
0
N
B
k
z
k
80
74
75
11
8
16
18
37
57
77
79
plyaddlem1
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
F
+
f
G
=
z
∈
ℂ
⟼
∑
k
=
0
if
M
≤
N
N
M
A
+
f
B
k
z
k
81
5
12
22
73
80
coeeq
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
coeff
F
+
f
G
=
A
+
f
B
82
elfznn0
⊢
k
∈
0
…
if
M
≤
N
N
M
→
k
∈
ℕ
0
83
ffvelcdm
⊢
A
+
f
B
:
ℕ
0
⟶
ℂ
∧
k
∈
ℕ
0
→
A
+
f
B
k
∈
ℂ
84
22
82
83
syl2an
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
∧
k
∈
0
…
if
M
≤
N
N
M
→
A
+
f
B
k
∈
ℂ
85
5
12
84
80
dgrle
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
deg
F
+
f
G
≤
if
M
≤
N
N
M
86
81
85
jca
⊢
F
∈
Poly
S
∧
G
∈
Poly
S
→
coeff
F
+
f
G
=
A
+
f
B
∧
deg
F
+
f
G
≤
if
M
≤
N
N
M