Metamath Proof Explorer


Theorem coeaddlem

Description: Lemma for coeadd and dgradd . (Contributed by Mario Carneiro, 24-Jul-2014)

Ref Expression
Hypotheses coefv0.1 A=coeffF
coeadd.2 B=coeffG
coeadd.3 M=degF
coeadd.4 N=degG
Assertion coeaddlem FPolySGPolyScoeffF+fG=A+fBdegF+fGifMNNM

Proof

Step Hyp Ref Expression
1 coefv0.1 A=coeffF
2 coeadd.2 B=coeffG
3 coeadd.3 M=degF
4 coeadd.4 N=degG
5 plyaddcl FPolySGPolySF+fGPoly
6 dgrcl GPolySdegG0
7 4 6 eqeltrid GPolySN0
8 7 adantl FPolySGPolySN0
9 dgrcl FPolySdegF0
10 3 9 eqeltrid FPolySM0
11 10 adantr FPolySGPolySM0
12 8 11 ifcld FPolySGPolySifMNNM0
13 addcl xyx+y
14 13 adantl FPolySGPolySxyx+y
15 1 coef3 FPolySA:0
16 15 adantr FPolySGPolySA:0
17 2 coef3 GPolySB:0
18 17 adantl FPolySGPolySB:0
19 nn0ex 0V
20 19 a1i FPolySGPolyS0V
21 inidm 00=0
22 14 16 18 20 20 21 off FPolySGPolySA+fB:0
23 oveq12 Ak=0Bk=0Ak+Bk=0+0
24 00id 0+0=0
25 23 24 eqtrdi Ak=0Bk=0Ak+Bk=0
26 16 ffnd FPolySGPolySAFn0
27 18 ffnd FPolySGPolySBFn0
28 eqidd FPolySGPolySk0Ak=Ak
29 eqidd FPolySGPolySk0Bk=Bk
30 26 27 20 20 21 28 29 ofval FPolySGPolySk0A+fBk=Ak+Bk
31 30 eqeq1d FPolySGPolySk0A+fBk=0Ak+Bk=0
32 25 31 imbitrrid FPolySGPolySk0Ak=0Bk=0A+fBk=0
33 32 necon3ad FPolySGPolySk0A+fBk0¬Ak=0Bk=0
34 neorian Ak0Bk0¬Ak=0Bk=0
35 33 34 syl6ibr FPolySGPolySk0A+fBk0Ak0Bk0
36 1 3 dgrub2 FPolySAM+1=0
37 36 adantr FPolySGPolySAM+1=0
38 plyco0 M0A:0AM+1=0k0Ak0kM
39 11 16 38 syl2anc FPolySGPolySAM+1=0k0Ak0kM
40 37 39 mpbid FPolySGPolySk0Ak0kM
41 40 r19.21bi FPolySGPolySk0Ak0kM
42 11 adantr FPolySGPolySk0M0
43 42 nn0red FPolySGPolySk0M
44 8 adantr FPolySGPolySk0N0
45 44 nn0red FPolySGPolySk0N
46 max1 MNMifMNNM
47 43 45 46 syl2anc FPolySGPolySk0MifMNNM
48 nn0re k0k
49 48 adantl FPolySGPolySk0k
50 12 adantr FPolySGPolySk0ifMNNM0
51 50 nn0red FPolySGPolySk0ifMNNM
52 letr kMifMNNMkMMifMNNMkifMNNM
53 49 43 51 52 syl3anc FPolySGPolySk0kMMifMNNMkifMNNM
54 47 53 mpan2d FPolySGPolySk0kMkifMNNM
55 41 54 syld FPolySGPolySk0Ak0kifMNNM
56 2 4 dgrub2 GPolySBN+1=0
57 56 adantl FPolySGPolySBN+1=0
58 plyco0 N0B:0BN+1=0k0Bk0kN
59 8 18 58 syl2anc FPolySGPolySBN+1=0k0Bk0kN
60 57 59 mpbid FPolySGPolySk0Bk0kN
61 60 r19.21bi FPolySGPolySk0Bk0kN
62 max2 MNNifMNNM
63 43 45 62 syl2anc FPolySGPolySk0NifMNNM
64 letr kNifMNNMkNNifMNNMkifMNNM
65 49 45 51 64 syl3anc FPolySGPolySk0kNNifMNNMkifMNNM
66 63 65 mpan2d FPolySGPolySk0kNkifMNNM
67 61 66 syld FPolySGPolySk0Bk0kifMNNM
68 55 67 jaod FPolySGPolySk0Ak0Bk0kifMNNM
69 35 68 syld FPolySGPolySk0A+fBk0kifMNNM
70 69 ralrimiva FPolySGPolySk0A+fBk0kifMNNM
71 plyco0 ifMNNM0A+fB:0A+fBifMNNM+1=0k0A+fBk0kifMNNM
72 12 22 71 syl2anc FPolySGPolySA+fBifMNNM+1=0k0A+fBk0kifMNNM
73 70 72 mpbird FPolySGPolySA+fBifMNNM+1=0
74 simpl FPolySGPolySFPolyS
75 simpr FPolySGPolySGPolyS
76 1 3 coeid FPolySF=zk=0MAkzk
77 76 adantr FPolySGPolySF=zk=0MAkzk
78 2 4 coeid GPolySG=zk=0NBkzk
79 78 adantl FPolySGPolySG=zk=0NBkzk
80 74 75 11 8 16 18 37 57 77 79 plyaddlem1 FPolySGPolySF+fG=zk=0ifMNNMA+fBkzk
81 5 12 22 73 80 coeeq FPolySGPolyScoeffF+fG=A+fB
82 elfznn0 k0ifMNNMk0
83 ffvelcdm A+fB:0k0A+fBk
84 22 82 83 syl2an FPolySGPolySk0ifMNNMA+fBk
85 5 12 84 80 dgrle FPolySGPolySdegF+fGifMNNM
86 81 85 jca FPolySGPolyScoeffF+fG=A+fBdegF+fGifMNNM