| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coefv0.1 |
|
| 2 |
|
coeadd.2 |
|
| 3 |
|
coeadd.3 |
|
| 4 |
|
coeadd.4 |
|
| 5 |
|
plymulcl |
|
| 6 |
|
dgrcl |
|
| 7 |
3 6
|
eqeltrid |
|
| 8 |
|
dgrcl |
|
| 9 |
4 8
|
eqeltrid |
|
| 10 |
|
nn0addcl |
|
| 11 |
7 9 10
|
syl2an |
|
| 12 |
|
fzfid |
|
| 13 |
1
|
coef3 |
|
| 14 |
13
|
adantr |
|
| 15 |
14
|
adantr |
|
| 16 |
|
elfznn0 |
|
| 17 |
|
ffvelcdm |
|
| 18 |
15 16 17
|
syl2an |
|
| 19 |
2
|
coef3 |
|
| 20 |
19
|
adantl |
|
| 21 |
20
|
ad2antrr |
|
| 22 |
|
fznn0sub |
|
| 23 |
22
|
adantl |
|
| 24 |
21 23
|
ffvelcdmd |
|
| 25 |
18 24
|
mulcld |
|
| 26 |
12 25
|
fsumcl |
|
| 27 |
26
|
fmpttd |
|
| 28 |
|
oveq2 |
|
| 29 |
|
fvoveq1 |
|
| 30 |
29
|
oveq2d |
|
| 31 |
30
|
adantr |
|
| 32 |
28 31
|
sumeq12dv |
|
| 33 |
|
eqid |
|
| 34 |
|
sumex |
|
| 35 |
32 33 34
|
fvmpt |
|
| 36 |
35
|
ad2antrl |
|
| 37 |
|
simp2r |
|
| 38 |
|
simp2l |
|
| 39 |
38
|
nn0red |
|
| 40 |
|
simp3l |
|
| 41 |
|
elfznn0 |
|
| 42 |
40 41
|
syl |
|
| 43 |
42
|
nn0red |
|
| 44 |
9
|
adantl |
|
| 45 |
44
|
3ad2ant1 |
|
| 46 |
45
|
nn0red |
|
| 47 |
39 43 46
|
lesubadd2d |
|
| 48 |
7
|
adantr |
|
| 49 |
48
|
3ad2ant1 |
|
| 50 |
49
|
nn0red |
|
| 51 |
|
simp3r |
|
| 52 |
43 50 46 51
|
leadd1dd |
|
| 53 |
43 46
|
readdcld |
|
| 54 |
50 46
|
readdcld |
|
| 55 |
|
letr |
|
| 56 |
39 53 54 55
|
syl3anc |
|
| 57 |
52 56
|
mpan2d |
|
| 58 |
47 57
|
sylbid |
|
| 59 |
37 58
|
mtod |
|
| 60 |
|
simpr |
|
| 61 |
60
|
3ad2ant1 |
|
| 62 |
|
fznn0sub |
|
| 63 |
40 62
|
syl |
|
| 64 |
2 4
|
dgrub |
|
| 65 |
64
|
3expia |
|
| 66 |
61 63 65
|
syl2anc |
|
| 67 |
66
|
necon1bd |
|
| 68 |
59 67
|
mpd |
|
| 69 |
68
|
oveq2d |
|
| 70 |
14
|
3ad2ant1 |
|
| 71 |
70 42
|
ffvelcdmd |
|
| 72 |
71
|
mul01d |
|
| 73 |
69 72
|
eqtrd |
|
| 74 |
73
|
3expia |
|
| 75 |
74
|
impl |
|
| 76 |
|
simpl |
|
| 77 |
76
|
adantr |
|
| 78 |
1 3
|
dgrub |
|
| 79 |
78
|
3expia |
|
| 80 |
77 41 79
|
syl2an |
|
| 81 |
80
|
necon1bd |
|
| 82 |
81
|
imp |
|
| 83 |
82
|
oveq1d |
|
| 84 |
20
|
ad3antrrr |
|
| 85 |
62
|
ad2antlr |
|
| 86 |
84 85
|
ffvelcdmd |
|
| 87 |
86
|
mul02d |
|
| 88 |
83 87
|
eqtrd |
|
| 89 |
75 88
|
pm2.61dan |
|
| 90 |
89
|
sumeq2dv |
|
| 91 |
|
fzfi |
|
| 92 |
91
|
olci |
|
| 93 |
|
sumz |
|
| 94 |
92 93
|
ax-mp |
|
| 95 |
90 94
|
eqtrdi |
|
| 96 |
36 95
|
eqtrd |
|
| 97 |
96
|
expr |
|
| 98 |
97
|
necon1ad |
|
| 99 |
98
|
ralrimiva |
|
| 100 |
|
plyco0 |
|
| 101 |
11 27 100
|
syl2anc |
|
| 102 |
99 101
|
mpbird |
|
| 103 |
1 3
|
dgrub2 |
|
| 104 |
103
|
adantr |
|
| 105 |
2 4
|
dgrub2 |
|
| 106 |
105
|
adantl |
|
| 107 |
1 3
|
coeid |
|
| 108 |
107
|
adantr |
|
| 109 |
2 4
|
coeid |
|
| 110 |
109
|
adantl |
|
| 111 |
76 60 48 44 14 20 104 106 108 110
|
plymullem1 |
|
| 112 |
|
elfznn0 |
|
| 113 |
112 35
|
syl |
|
| 114 |
113
|
oveq1d |
|
| 115 |
114
|
sumeq2i |
|
| 116 |
115
|
mpteq2i |
|
| 117 |
111 116
|
eqtr4di |
|
| 118 |
5 11 27 102 117
|
coeeq |
|
| 119 |
|
ffvelcdm |
|
| 120 |
27 112 119
|
syl2an |
|
| 121 |
5 11 120 117
|
dgrle |
|
| 122 |
118 121
|
jca |
|