Metamath Proof Explorer


Theorem coeeu

Description: Uniqueness of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Assertion coeeu FPolyS∃!a0n0an+1=0F=zk=0nakzk

Proof

Step Hyp Ref Expression
1 plyssc PolySPoly
2 1 sseli FPolySFPoly
3 elply2 FPolyn0a00an+1=0F=zk=0nakzk
4 3 simprbi FPolyn0a00an+1=0F=zk=0nakzk
5 rexcom n0a00an+1=0F=zk=0nakzka00n0an+1=0F=zk=0nakzk
6 4 5 sylib FPolya00n0an+1=0F=zk=0nakzk
7 2 6 syl FPolySa00n0an+1=0F=zk=0nakzk
8 0cn 0
9 snssi 00
10 8 9 ax-mp 0
11 ssequn2 00=
12 10 11 mpbi 0=
13 12 oveq1i 00=0
14 13 rexeqi a00n0an+1=0F=zk=0nakzka0n0an+1=0F=zk=0nakzk
15 7 14 sylib FPolySa0n0an+1=0F=zk=0nakzk
16 reeanv n0m0an+1=0F=zk=0nakzkbm+1=0F=zk=0mbkzkn0an+1=0F=zk=0nakzkm0bm+1=0F=zk=0mbkzk
17 simp1l FPolySa0b0n0m0an+1=0F=zk=0nakzkbm+1=0F=zk=0mbkzkFPolyS
18 simp1rl FPolySa0b0n0m0an+1=0F=zk=0nakzkbm+1=0F=zk=0mbkzka0
19 simp1rr FPolySa0b0n0m0an+1=0F=zk=0nakzkbm+1=0F=zk=0mbkzkb0
20 simp2l FPolySa0b0n0m0an+1=0F=zk=0nakzkbm+1=0F=zk=0mbkzkn0
21 simp2r FPolySa0b0n0m0an+1=0F=zk=0nakzkbm+1=0F=zk=0mbkzkm0
22 simp3ll FPolySa0b0n0m0an+1=0F=zk=0nakzkbm+1=0F=zk=0mbkzkan+1=0
23 simp3rl FPolySa0b0n0m0an+1=0F=zk=0nakzkbm+1=0F=zk=0mbkzkbm+1=0
24 simp3lr FPolySa0b0n0m0an+1=0F=zk=0nakzkbm+1=0F=zk=0mbkzkF=zk=0nakzk
25 oveq1 z=wzk=wk
26 25 oveq2d z=wakzk=akwk
27 26 sumeq2sdv z=wk=0nakzk=k=0nakwk
28 fveq2 k=jak=aj
29 oveq2 k=jwk=wj
30 28 29 oveq12d k=jakwk=ajwj
31 30 cbvsumv k=0nakwk=j=0najwj
32 27 31 eqtrdi z=wk=0nakzk=j=0najwj
33 32 cbvmptv zk=0nakzk=wj=0najwj
34 24 33 eqtrdi FPolySa0b0n0m0an+1=0F=zk=0nakzkbm+1=0F=zk=0mbkzkF=wj=0najwj
35 simp3rr FPolySa0b0n0m0an+1=0F=zk=0nakzkbm+1=0F=zk=0mbkzkF=zk=0mbkzk
36 25 oveq2d z=wbkzk=bkwk
37 36 sumeq2sdv z=wk=0mbkzk=k=0mbkwk
38 fveq2 k=jbk=bj
39 38 29 oveq12d k=jbkwk=bjwj
40 39 cbvsumv k=0mbkwk=j=0mbjwj
41 37 40 eqtrdi z=wk=0mbkzk=j=0mbjwj
42 41 cbvmptv zk=0mbkzk=wj=0mbjwj
43 35 42 eqtrdi FPolySa0b0n0m0an+1=0F=zk=0nakzkbm+1=0F=zk=0mbkzkF=wj=0mbjwj
44 17 18 19 20 21 22 23 34 43 coeeulem FPolySa0b0n0m0an+1=0F=zk=0nakzkbm+1=0F=zk=0mbkzka=b
45 44 3expia FPolySa0b0n0m0an+1=0F=zk=0nakzkbm+1=0F=zk=0mbkzka=b
46 45 rexlimdvva FPolySa0b0n0m0an+1=0F=zk=0nakzkbm+1=0F=zk=0mbkzka=b
47 16 46 biimtrrid FPolySa0b0n0an+1=0F=zk=0nakzkm0bm+1=0F=zk=0mbkzka=b
48 47 ralrimivva FPolySa0b0n0an+1=0F=zk=0nakzkm0bm+1=0F=zk=0mbkzka=b
49 imaeq1 a=ban+1=bn+1
50 49 eqeq1d a=ban+1=0bn+1=0
51 fveq1 a=bak=bk
52 51 oveq1d a=bakzk=bkzk
53 52 sumeq2sdv a=bk=0nakzk=k=0nbkzk
54 53 mpteq2dv a=bzk=0nakzk=zk=0nbkzk
55 54 eqeq2d a=bF=zk=0nakzkF=zk=0nbkzk
56 50 55 anbi12d a=ban+1=0F=zk=0nakzkbn+1=0F=zk=0nbkzk
57 56 rexbidv a=bn0an+1=0F=zk=0nakzkn0bn+1=0F=zk=0nbkzk
58 fvoveq1 n=mn+1=m+1
59 58 imaeq2d n=mbn+1=bm+1
60 59 eqeq1d n=mbn+1=0bm+1=0
61 oveq2 n=m0n=0m
62 61 sumeq1d n=mk=0nbkzk=k=0mbkzk
63 62 mpteq2dv n=mzk=0nbkzk=zk=0mbkzk
64 63 eqeq2d n=mF=zk=0nbkzkF=zk=0mbkzk
65 60 64 anbi12d n=mbn+1=0F=zk=0nbkzkbm+1=0F=zk=0mbkzk
66 65 cbvrexvw n0bn+1=0F=zk=0nbkzkm0bm+1=0F=zk=0mbkzk
67 57 66 bitrdi a=bn0an+1=0F=zk=0nakzkm0bm+1=0F=zk=0mbkzk
68 67 reu4 ∃!a0n0an+1=0F=zk=0nakzka0n0an+1=0F=zk=0nakzka0b0n0an+1=0F=zk=0nakzkm0bm+1=0F=zk=0mbkzka=b
69 15 48 68 sylanbrc FPolyS∃!a0n0an+1=0F=zk=0nakzk