Metamath Proof Explorer


Theorem coeeu

Description: Uniqueness of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014) (Revised by Mario Carneiro, 23-Aug-2014)

Ref Expression
Assertion coeeu F Poly S ∃! a 0 n 0 a n + 1 = 0 F = z k = 0 n a k z k

Proof

Step Hyp Ref Expression
1 plyssc Poly S Poly
2 1 sseli F Poly S F Poly
3 elply2 F Poly n 0 a 0 0 a n + 1 = 0 F = z k = 0 n a k z k
4 3 simprbi F Poly n 0 a 0 0 a n + 1 = 0 F = z k = 0 n a k z k
5 rexcom n 0 a 0 0 a n + 1 = 0 F = z k = 0 n a k z k a 0 0 n 0 a n + 1 = 0 F = z k = 0 n a k z k
6 4 5 sylib F Poly a 0 0 n 0 a n + 1 = 0 F = z k = 0 n a k z k
7 2 6 syl F Poly S a 0 0 n 0 a n + 1 = 0 F = z k = 0 n a k z k
8 0cn 0
9 snssi 0 0
10 8 9 ax-mp 0
11 ssequn2 0 0 =
12 10 11 mpbi 0 =
13 12 oveq1i 0 0 = 0
14 13 rexeqi a 0 0 n 0 a n + 1 = 0 F = z k = 0 n a k z k a 0 n 0 a n + 1 = 0 F = z k = 0 n a k z k
15 7 14 sylib F Poly S a 0 n 0 a n + 1 = 0 F = z k = 0 n a k z k
16 reeanv n 0 m 0 a n + 1 = 0 F = z k = 0 n a k z k b m + 1 = 0 F = z k = 0 m b k z k n 0 a n + 1 = 0 F = z k = 0 n a k z k m 0 b m + 1 = 0 F = z k = 0 m b k z k
17 simp1l F Poly S a 0 b 0 n 0 m 0 a n + 1 = 0 F = z k = 0 n a k z k b m + 1 = 0 F = z k = 0 m b k z k F Poly S
18 simp1rl F Poly S a 0 b 0 n 0 m 0 a n + 1 = 0 F = z k = 0 n a k z k b m + 1 = 0 F = z k = 0 m b k z k a 0
19 simp1rr F Poly S a 0 b 0 n 0 m 0 a n + 1 = 0 F = z k = 0 n a k z k b m + 1 = 0 F = z k = 0 m b k z k b 0
20 simp2l F Poly S a 0 b 0 n 0 m 0 a n + 1 = 0 F = z k = 0 n a k z k b m + 1 = 0 F = z k = 0 m b k z k n 0
21 simp2r F Poly S a 0 b 0 n 0 m 0 a n + 1 = 0 F = z k = 0 n a k z k b m + 1 = 0 F = z k = 0 m b k z k m 0
22 simp3ll F Poly S a 0 b 0 n 0 m 0 a n + 1 = 0 F = z k = 0 n a k z k b m + 1 = 0 F = z k = 0 m b k z k a n + 1 = 0
23 simp3rl F Poly S a 0 b 0 n 0 m 0 a n + 1 = 0 F = z k = 0 n a k z k b m + 1 = 0 F = z k = 0 m b k z k b m + 1 = 0
24 simp3lr F Poly S a 0 b 0 n 0 m 0 a n + 1 = 0 F = z k = 0 n a k z k b m + 1 = 0 F = z k = 0 m b k z k F = z k = 0 n a k z k
25 oveq1 z = w z k = w k
26 25 oveq2d z = w a k z k = a k w k
27 26 sumeq2sdv z = w k = 0 n a k z k = k = 0 n a k w k
28 fveq2 k = j a k = a j
29 oveq2 k = j w k = w j
30 28 29 oveq12d k = j a k w k = a j w j
31 30 cbvsumv k = 0 n a k w k = j = 0 n a j w j
32 27 31 eqtrdi z = w k = 0 n a k z k = j = 0 n a j w j
33 32 cbvmptv z k = 0 n a k z k = w j = 0 n a j w j
34 24 33 eqtrdi F Poly S a 0 b 0 n 0 m 0 a n + 1 = 0 F = z k = 0 n a k z k b m + 1 = 0 F = z k = 0 m b k z k F = w j = 0 n a j w j
35 simp3rr F Poly S a 0 b 0 n 0 m 0 a n + 1 = 0 F = z k = 0 n a k z k b m + 1 = 0 F = z k = 0 m b k z k F = z k = 0 m b k z k
36 25 oveq2d z = w b k z k = b k w k
37 36 sumeq2sdv z = w k = 0 m b k z k = k = 0 m b k w k
38 fveq2 k = j b k = b j
39 38 29 oveq12d k = j b k w k = b j w j
40 39 cbvsumv k = 0 m b k w k = j = 0 m b j w j
41 37 40 eqtrdi z = w k = 0 m b k z k = j = 0 m b j w j
42 41 cbvmptv z k = 0 m b k z k = w j = 0 m b j w j
43 35 42 eqtrdi F Poly S a 0 b 0 n 0 m 0 a n + 1 = 0 F = z k = 0 n a k z k b m + 1 = 0 F = z k = 0 m b k z k F = w j = 0 m b j w j
44 17 18 19 20 21 22 23 34 43 coeeulem F Poly S a 0 b 0 n 0 m 0 a n + 1 = 0 F = z k = 0 n a k z k b m + 1 = 0 F = z k = 0 m b k z k a = b
45 44 3expia F Poly S a 0 b 0 n 0 m 0 a n + 1 = 0 F = z k = 0 n a k z k b m + 1 = 0 F = z k = 0 m b k z k a = b
46 45 rexlimdvva F Poly S a 0 b 0 n 0 m 0 a n + 1 = 0 F = z k = 0 n a k z k b m + 1 = 0 F = z k = 0 m b k z k a = b
47 16 46 syl5bir F Poly S a 0 b 0 n 0 a n + 1 = 0 F = z k = 0 n a k z k m 0 b m + 1 = 0 F = z k = 0 m b k z k a = b
48 47 ralrimivva F Poly S a 0 b 0 n 0 a n + 1 = 0 F = z k = 0 n a k z k m 0 b m + 1 = 0 F = z k = 0 m b k z k a = b
49 imaeq1 a = b a n + 1 = b n + 1
50 49 eqeq1d a = b a n + 1 = 0 b n + 1 = 0
51 fveq1 a = b a k = b k
52 51 oveq1d a = b a k z k = b k z k
53 52 sumeq2sdv a = b k = 0 n a k z k = k = 0 n b k z k
54 53 mpteq2dv a = b z k = 0 n a k z k = z k = 0 n b k z k
55 54 eqeq2d a = b F = z k = 0 n a k z k F = z k = 0 n b k z k
56 50 55 anbi12d a = b a n + 1 = 0 F = z k = 0 n a k z k b n + 1 = 0 F = z k = 0 n b k z k
57 56 rexbidv a = b n 0 a n + 1 = 0 F = z k = 0 n a k z k n 0 b n + 1 = 0 F = z k = 0 n b k z k
58 fvoveq1 n = m n + 1 = m + 1
59 58 imaeq2d n = m b n + 1 = b m + 1
60 59 eqeq1d n = m b n + 1 = 0 b m + 1 = 0
61 oveq2 n = m 0 n = 0 m
62 61 sumeq1d n = m k = 0 n b k z k = k = 0 m b k z k
63 62 mpteq2dv n = m z k = 0 n b k z k = z k = 0 m b k z k
64 63 eqeq2d n = m F = z k = 0 n b k z k F = z k = 0 m b k z k
65 60 64 anbi12d n = m b n + 1 = 0 F = z k = 0 n b k z k b m + 1 = 0 F = z k = 0 m b k z k
66 65 cbvrexvw n 0 b n + 1 = 0 F = z k = 0 n b k z k m 0 b m + 1 = 0 F = z k = 0 m b k z k
67 57 66 bitrdi a = b n 0 a n + 1 = 0 F = z k = 0 n a k z k m 0 b m + 1 = 0 F = z k = 0 m b k z k
68 67 reu4 ∃! a 0 n 0 a n + 1 = 0 F = z k = 0 n a k z k a 0 n 0 a n + 1 = 0 F = z k = 0 n a k z k a 0 b 0 n 0 a n + 1 = 0 F = z k = 0 n a k z k m 0 b m + 1 = 0 F = z k = 0 m b k z k a = b
69 15 48 68 sylanbrc F Poly S ∃! a 0 n 0 a n + 1 = 0 F = z k = 0 n a k z k