| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constrresqrtcl.1 |
|
| 2 |
|
constrresqrtcl.2 |
|
| 3 |
|
constrresqrtcl.3 |
|
| 4 |
|
0zd |
|
| 5 |
4
|
zconstr |
|
| 6 |
|
1zzd |
|
| 7 |
6
|
zconstr |
|
| 8 |
|
iconstr |
|
| 9 |
8
|
a1i |
|
| 10 |
2
|
recnd |
|
| 11 |
|
1cnd |
|
| 12 |
10 11
|
subcld |
|
| 13 |
|
2cnd |
|
| 14 |
|
2ne0 |
|
| 15 |
14
|
a1i |
|
| 16 |
12 13 15
|
divrecd |
|
| 17 |
10 11
|
negsubd |
|
| 18 |
7
|
constrnegcl |
|
| 19 |
1 18
|
constraddcl |
|
| 20 |
17 19
|
eqeltrrd |
|
| 21 |
|
2z |
|
| 22 |
21
|
a1i |
|
| 23 |
22
|
zconstr |
|
| 24 |
23 15
|
constrinvcl |
|
| 25 |
20 24
|
constrmulcl |
|
| 26 |
16 25
|
eqeltrd |
|
| 27 |
9 26
|
constrmulcl |
|
| 28 |
10 11
|
addcld |
|
| 29 |
28 13 15
|
divrecd |
|
| 30 |
1 7
|
constraddcl |
|
| 31 |
30 24
|
constrmulcl |
|
| 32 |
29 31
|
eqeltrd |
|
| 33 |
2 3
|
resqrtcld |
|
| 34 |
33
|
recnd |
|
| 35 |
11
|
subid1d |
|
| 36 |
35 11
|
eqeltrd |
|
| 37 |
34 36
|
mulcld |
|
| 38 |
37
|
addlidd |
|
| 39 |
35
|
oveq2d |
|
| 40 |
34
|
mulridd |
|
| 41 |
38 39 40
|
3eqtrrd |
|
| 42 |
|
1red |
|
| 43 |
2 42
|
readdcld |
|
| 44 |
43
|
rehalfcld |
|
| 45 |
|
2rp |
|
| 46 |
45
|
a1i |
|
| 47 |
|
0red |
|
| 48 |
2
|
lep1d |
|
| 49 |
47 2 43 3 48
|
letrd |
|
| 50 |
43 46 49
|
divge0d |
|
| 51 |
44 50
|
absidd |
|
| 52 |
28
|
halfcld |
|
| 53 |
52
|
subid1d |
|
| 54 |
53
|
fveq2d |
|
| 55 |
|
ax-icn |
|
| 56 |
55
|
a1i |
|
| 57 |
2 42
|
resubcld |
|
| 58 |
57
|
rehalfcld |
|
| 59 |
58
|
recnd |
|
| 60 |
56 59
|
mulneg2d |
|
| 61 |
60
|
oveq2d |
|
| 62 |
27
|
constrcn |
|
| 63 |
34 62
|
negsubd |
|
| 64 |
61 63
|
eqtr2d |
|
| 65 |
64
|
fveq2d |
|
| 66 |
58
|
renegcld |
|
| 67 |
|
absreim |
|
| 68 |
33 66 67
|
syl2anc |
|
| 69 |
|
sq2 |
|
| 70 |
69
|
a1i |
|
| 71 |
70
|
oveq2d |
|
| 72 |
|
4cn |
|
| 73 |
72
|
a1i |
|
| 74 |
13 15 22
|
expne0d |
|
| 75 |
69 74
|
eqnetrrid |
|
| 76 |
10 73 75
|
divcan3d |
|
| 77 |
71 76
|
eqtr2d |
|
| 78 |
12 13 15
|
sqdivd |
|
| 79 |
77 78
|
oveq12d |
|
| 80 |
10
|
sqsqrtd |
|
| 81 |
59
|
sqnegd |
|
| 82 |
80 81
|
oveq12d |
|
| 83 |
28 13 15
|
sqdivd |
|
| 84 |
28
|
sqcld |
|
| 85 |
12
|
sqcld |
|
| 86 |
73 10
|
mulcld |
|
| 87 |
10 11
|
binom2subadd |
|
| 88 |
10
|
mulridd |
|
| 89 |
88
|
oveq2d |
|
| 90 |
87 89
|
eqtrd |
|
| 91 |
|
subadd2 |
|
| 92 |
91
|
biimpa |
|
| 93 |
84 85 86 90 92
|
syl31anc |
|
| 94 |
93
|
oveq1d |
|
| 95 |
13
|
sqcld |
|
| 96 |
86 85 95 74
|
divdird |
|
| 97 |
83 94 96
|
3eqtr2d |
|
| 98 |
79 82 97
|
3eqtr4d |
|
| 99 |
98
|
fveq2d |
|
| 100 |
44 50
|
sqrtsqd |
|
| 101 |
99 100
|
eqtrd |
|
| 102 |
65 68 101
|
3eqtrd |
|
| 103 |
51 54 102
|
3eqtr4rd |
|
| 104 |
5 7 27 32 5 33 34 41 103
|
constrlccl |
|