Metamath Proof Explorer


Theorem copco

Description: The composition of a concatenation of paths with a continuous function. (Contributed by Mario Carneiro, 9-Jul-2015)

Ref Expression
Hypotheses pcoval.2 φFIICnJ
pcoval.3 φGIICnJ
pcoval2.4 φF1=G0
copco.6 φHJCnK
Assertion copco φHF*𝑝JG=HF*𝑝KHG

Proof

Step Hyp Ref Expression
1 pcoval.2 φFIICnJ
2 pcoval.3 φGIICnJ
3 pcoval2.4 φF1=G0
4 copco.6 φHJCnK
5 iiuni 01=II
6 eqid J=J
7 5 6 cnf FIICnJF:01J
8 1 7 syl φF:01J
9 elii1 x012x01x12
10 iihalf1 x0122x01
11 9 10 sylbir x01x122x01
12 fvco3 F:01J2x01HF2x=HF2x
13 8 11 12 syl2an φx01x12HF2x=HF2x
14 13 anassrs φx01x12HF2x=HF2x
15 5 6 cnf GIICnJG:01J
16 2 15 syl φG:01J
17 elii2 x01¬x12x121
18 iihalf2 x1212x101
19 17 18 syl x01¬x122x101
20 fvco3 G:01J2x101HG2x1=HG2x1
21 16 19 20 syl2an φx01¬x12HG2x1=HG2x1
22 21 anassrs φx01¬x12HG2x1=HG2x1
23 14 22 ifeq12da φx01ifx12HF2xHG2x1=ifx12HF2xHG2x1
24 23 mpteq2dva φx01ifx12HF2xHG2x1=x01ifx12HF2xHG2x1
25 cnco FIICnJHJCnKHFIICnK
26 1 4 25 syl2anc φHFIICnK
27 cnco GIICnJHJCnKHGIICnK
28 2 4 27 syl2anc φHGIICnK
29 26 28 pcoval φHF*𝑝KHG=x01ifx12HF2xHG2x1
30 1 2 pcoval φF*𝑝JG=x01ifx12F2xG2x1
31 1 2 3 pcocn φF*𝑝JGIICnJ
32 30 31 eqeltrrd φx01ifx12F2xG2x1IICnJ
33 5 6 cnf x01ifx12F2xG2x1IICnJx01ifx12F2xG2x1:01J
34 32 33 syl φx01ifx12F2xG2x1:01J
35 eqid x01ifx12F2xG2x1=x01ifx12F2xG2x1
36 35 fmpt x01ifx12F2xG2x1Jx01ifx12F2xG2x1:01J
37 34 36 sylibr φx01ifx12F2xG2x1J
38 eqid K=K
39 6 38 cnf HJCnKH:JK
40 4 39 syl φH:JK
41 40 feqmptd φH=yJHy
42 fveq2 y=ifx12F2xG2x1Hy=Hifx12F2xG2x1
43 fvif Hifx12F2xG2x1=ifx12HF2xHG2x1
44 42 43 eqtrdi y=ifx12F2xG2x1Hy=ifx12HF2xHG2x1
45 37 30 41 44 fmptcof φHF*𝑝JG=x01ifx12HF2xHG2x1
46 24 29 45 3eqtr4rd φHF*𝑝JG=HF*𝑝KHG