Metamath Proof Explorer


Theorem copco

Description: The composition of a concatenation of paths with a continuous function. (Contributed by Mario Carneiro, 9-Jul-2015)

Ref Expression
Hypotheses pcoval.2 φ F II Cn J
pcoval.3 φ G II Cn J
pcoval2.4 φ F 1 = G 0
copco.6 φ H J Cn K
Assertion copco φ H F * 𝑝 J G = H F * 𝑝 K H G

Proof

Step Hyp Ref Expression
1 pcoval.2 φ F II Cn J
2 pcoval.3 φ G II Cn J
3 pcoval2.4 φ F 1 = G 0
4 copco.6 φ H J Cn K
5 iiuni 0 1 = II
6 eqid J = J
7 5 6 cnf F II Cn J F : 0 1 J
8 1 7 syl φ F : 0 1 J
9 elii1 x 0 1 2 x 0 1 x 1 2
10 iihalf1 x 0 1 2 2 x 0 1
11 9 10 sylbir x 0 1 x 1 2 2 x 0 1
12 fvco3 F : 0 1 J 2 x 0 1 H F 2 x = H F 2 x
13 8 11 12 syl2an φ x 0 1 x 1 2 H F 2 x = H F 2 x
14 13 anassrs φ x 0 1 x 1 2 H F 2 x = H F 2 x
15 5 6 cnf G II Cn J G : 0 1 J
16 2 15 syl φ G : 0 1 J
17 elii2 x 0 1 ¬ x 1 2 x 1 2 1
18 iihalf2 x 1 2 1 2 x 1 0 1
19 17 18 syl x 0 1 ¬ x 1 2 2 x 1 0 1
20 fvco3 G : 0 1 J 2 x 1 0 1 H G 2 x 1 = H G 2 x 1
21 16 19 20 syl2an φ x 0 1 ¬ x 1 2 H G 2 x 1 = H G 2 x 1
22 21 anassrs φ x 0 1 ¬ x 1 2 H G 2 x 1 = H G 2 x 1
23 14 22 ifeq12da φ x 0 1 if x 1 2 H F 2 x H G 2 x 1 = if x 1 2 H F 2 x H G 2 x 1
24 23 mpteq2dva φ x 0 1 if x 1 2 H F 2 x H G 2 x 1 = x 0 1 if x 1 2 H F 2 x H G 2 x 1
25 cnco F II Cn J H J Cn K H F II Cn K
26 1 4 25 syl2anc φ H F II Cn K
27 cnco G II Cn J H J Cn K H G II Cn K
28 2 4 27 syl2anc φ H G II Cn K
29 26 28 pcoval φ H F * 𝑝 K H G = x 0 1 if x 1 2 H F 2 x H G 2 x 1
30 1 2 pcoval φ F * 𝑝 J G = x 0 1 if x 1 2 F 2 x G 2 x 1
31 1 2 3 pcocn φ F * 𝑝 J G II Cn J
32 30 31 eqeltrrd φ x 0 1 if x 1 2 F 2 x G 2 x 1 II Cn J
33 5 6 cnf x 0 1 if x 1 2 F 2 x G 2 x 1 II Cn J x 0 1 if x 1 2 F 2 x G 2 x 1 : 0 1 J
34 32 33 syl φ x 0 1 if x 1 2 F 2 x G 2 x 1 : 0 1 J
35 eqid x 0 1 if x 1 2 F 2 x G 2 x 1 = x 0 1 if x 1 2 F 2 x G 2 x 1
36 35 fmpt x 0 1 if x 1 2 F 2 x G 2 x 1 J x 0 1 if x 1 2 F 2 x G 2 x 1 : 0 1 J
37 34 36 sylibr φ x 0 1 if x 1 2 F 2 x G 2 x 1 J
38 eqid K = K
39 6 38 cnf H J Cn K H : J K
40 4 39 syl φ H : J K
41 40 feqmptd φ H = y J H y
42 fveq2 y = if x 1 2 F 2 x G 2 x 1 H y = H if x 1 2 F 2 x G 2 x 1
43 fvif H if x 1 2 F 2 x G 2 x 1 = if x 1 2 H F 2 x H G 2 x 1
44 42 43 eqtrdi y = if x 1 2 F 2 x G 2 x 1 H y = if x 1 2 H F 2 x H G 2 x 1
45 37 30 41 44 fmptcof φ H F * 𝑝 J G = x 0 1 if x 1 2 H F 2 x H G 2 x 1
46 24 29 45 3eqtr4rd φ H F * 𝑝 J G = H F * 𝑝 K H G