Metamath Proof Explorer


Theorem cos01bnd

Description: Bounds on the cosine of a positive real number less than or equal to 1. (Contributed by Paul Chapman, 19-Jan-2008) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Assertion cos01bnd A0112A23<cosAcosA<1A23

Proof

Step Hyp Ref Expression
1 1re 1
2 0xr 0*
3 elioc2 0*1A01A0<AA1
4 2 1 3 mp2an A01A0<AA1
5 4 simp1bi A01A
6 5 resqcld A01A2
7 6 rehalfcld A01A22
8 resubcl 1A221A22
9 1 7 8 sylancr A011A22
10 9 recnd A011A22
11 ax-icn i
12 5 recnd A01A
13 mulcl iAiA
14 11 12 13 sylancr A01iA
15 4nn0 40
16 eqid n0iAnn!=n0iAnn!
17 16 eftlcl iA40k4n0iAnn!k
18 14 15 17 sylancl A01k4n0iAnn!k
19 18 recld A01k4n0iAnn!k
20 19 recnd A01k4n0iAnn!k
21 16 recos4p AcosA=1-A22+k4n0iAnn!k
22 5 21 syl A01cosA=1-A22+k4n0iAnn!k
23 10 20 22 mvrladdd A01cosA1A22=k4n0iAnn!k
24 23 fveq2d A01cosA1A22=k4n0iAnn!k
25 20 abscld A01k4n0iAnn!k
26 18 abscld A01k4n0iAnn!k
27 6nn 6
28 nndivre A26A26
29 6 27 28 sylancl A01A26
30 absrele k4n0iAnn!kk4n0iAnn!kk4n0iAnn!k
31 18 30 syl A01k4n0iAnn!kk4n0iAnn!k
32 reexpcl A40A4
33 5 15 32 sylancl A01A4
34 nndivre A46A46
35 33 27 34 sylancl A01A46
36 16 ef01bndlem A01k4n0iAnn!k<A46
37 2nn0 20
38 37 a1i A0120
39 4z 4
40 2re 2
41 4re 4
42 2lt4 2<4
43 40 41 42 ltleii 24
44 2z 2
45 44 eluz1i 42424
46 39 43 45 mpbir2an 42
47 46 a1i A0142
48 4 simp2bi A010<A
49 0re 0
50 ltle 0A0<A0A
51 49 5 50 sylancr A010<A0A
52 48 51 mpd A010A
53 4 simp3bi A01A1
54 5 38 47 52 53 leexp2rd A01A4A2
55 6re 6
56 55 a1i A016
57 6pos 0<6
58 57 a1i A010<6
59 lediv1 A4A260<6A4A2A46A26
60 33 6 56 58 59 syl112anc A01A4A2A46A26
61 54 60 mpbid A01A46A26
62 26 35 29 36 61 ltletrd A01k4n0iAnn!k<A26
63 25 26 29 31 62 lelttrd A01k4n0iAnn!k<A26
64 24 63 eqbrtrd A01cosA1A22<A26
65 5 recoscld A01cosA
66 65 9 29 absdifltd A01cosA1A22<A261-A22-A26<cosAcosA<1-A22+A26
67 1cnd A011
68 7 recnd A01A22
69 29 recnd A01A26
70 67 68 69 subsub4d A011-A22-A26=1A22+A26
71 halfpm6th 1216=1312+16=23
72 71 simpri 12+16=23
73 72 oveq2i A212+16=A223
74 6 recnd A01A2
75 2cn 2
76 2ne0 20
77 75 76 reccli 12
78 6cn 6
79 27 nnne0i 60
80 78 79 reccli 16
81 adddi A21216A212+16=A212+A216
82 77 80 81 mp3an23 A2A212+16=A212+A216
83 74 82 syl A01A212+16=A212+A216
84 73 83 eqtr3id A01A223=A212+A216
85 3cn 3
86 3ne0 30
87 85 86 pm3.2i 330
88 div12 2A23302A23=A223
89 75 87 88 mp3an13 A22A23=A223
90 74 89 syl A012A23=A223
91 divrec A2220A22=A212
92 75 76 91 mp3an23 A2A22=A212
93 74 92 syl A01A22=A212
94 divrec A2660A26=A216
95 78 79 94 mp3an23 A2A26=A216
96 74 95 syl A01A26=A216
97 93 96 oveq12d A01A22+A26=A212+A216
98 84 90 97 3eqtr4rd A01A22+A26=2A23
99 98 oveq2d A011A22+A26=12A23
100 70 99 eqtrd A011-A22-A26=12A23
101 100 breq1d A011-A22-A26<cosA12A23<cosA
102 67 68 69 subsubd A011A22A26=1-A22+A26
103 71 simpli 1216=13
104 103 oveq2i A21216=A213
105 subdi A21216A21216=A212A216
106 77 80 105 mp3an23 A2A21216=A212A216
107 74 106 syl A01A21216=A212A216
108 104 107 eqtr3id A01A213=A212A216
109 divrec A2330A23=A213
110 85 86 109 mp3an23 A2A23=A213
111 74 110 syl A01A23=A213
112 93 96 oveq12d A01A22A26=A212A216
113 108 111 112 3eqtr4rd A01A22A26=A23
114 113 oveq2d A011A22A26=1A23
115 102 114 eqtr3d A011-A22+A26=1A23
116 115 breq2d A01cosA<1-A22+A26cosA<1A23
117 101 116 anbi12d A011-A22-A26<cosAcosA<1-A22+A2612A23<cosAcosA<1A23
118 66 117 bitrd A01cosA1A22<A2612A23<cosAcosA<1A23
119 64 118 mpbid A0112A23<cosAcosA<1A23