Metamath Proof Explorer


Theorem cos2h

Description: Half-angle rule for cosine. (Contributed by Brendan Leahy, 4-Aug-2018)

Ref Expression
Assertion cos2h AππcosA2=1+cosA2

Proof

Step Hyp Ref Expression
1 pire π
2 1 renegcli π
3 iccssre ππππ
4 2 1 3 mp2an ππ
5 4 sseli AππA
6 5 rehalfcld AππA2
7 6 recoscld AππcosA2
8 1re 1
9 5 recoscld AππcosA
10 readdcl 1cosA1+cosA
11 8 9 10 sylancr Aππ1+cosA
12 11 rehalfcld Aππ1+cosA2
13 cosbnd A1cosAcosA1
14 13 simpld A1cosA
15 recoscl AcosA
16 recn cosAcosA
17 recn 11
18 subneg cosA1cosA-1=cosA+1
19 addcom 1cosA1+cosA=cosA+1
20 19 ancoms cosA11+cosA=cosA+1
21 18 20 eqtr4d cosA1cosA-1=1+cosA
22 16 17 21 syl2an cosA1cosA-1=1+cosA
23 22 breq2d cosA10cosA-101+cosA
24 renegcl 11
25 subge0 cosA10cosA-11cosA
26 24 25 sylan2 cosA10cosA-11cosA
27 10 ancoms cosA11+cosA
28 halfnneg2 1+cosA01+cosA01+cosA2
29 27 28 syl cosA101+cosA01+cosA2
30 23 26 29 3bitr3d cosA11cosA01+cosA2
31 15 8 30 sylancl A1cosA01+cosA2
32 14 31 mpbid A01+cosA2
33 5 32 syl Aππ01+cosA2
34 12 33 resqrtcld Aππ1+cosA2
35 2 1 elicc2i AππAπAAπ
36 2re 2
37 2pos 0<2
38 36 37 pm3.2i 20<2
39 lediv1 πA20<2πAπ2A2
40 2 38 39 mp3an13 AπAπ2A2
41 picn π
42 2cn 2
43 2ne0 20
44 divneg π220π2=π2
45 41 42 43 44 mp3an π2=π2
46 45 breq1i π2A2π2A2
47 40 46 bitr4di AπAπ2A2
48 lediv1 Aπ20<2AπA2π2
49 1 38 48 mp3an23 AAπA2π2
50 47 49 anbi12d AπAAππ2A2A2π2
51 rehalfcl AA2
52 51 rexrd AA2*
53 halfpire π2
54 53 renegcli π2
55 54 rexri π2*
56 53 rexri π2*
57 elicc4 π2*π2*A2*A2π2π2π2A2A2π2
58 55 56 57 mp3an12 A2*A2π2π2π2A2A2π2
59 52 58 syl AA2π2π2π2A2A2π2
60 50 59 bitr4d AπAAπA2π2π2
61 60 biimpd AπAAπA2π2π2
62 61 3impib AπAAπA2π2π2
63 35 62 sylbi AππA2π2π2
64 cosq14ge0 A2π2π20cosA2
65 63 64 syl Aππ0cosA2
66 12 33 sqrtge0d Aππ01+cosA2
67 5 recnd AππA
68 ax-1cn 1
69 coscl AcosA
70 addcl 1cosA1+cosA
71 68 69 70 sylancr A1+cosA
72 71 halfcld A1+cosA2
73 72 sqsqrtd A1+cosA22=1+cosA2
74 divcan2 A2202A2=A
75 42 43 74 mp3an23 A2A2=A
76 75 fveq2d Acos2A2=cosA
77 halfcl AA2
78 cos2t A2cos2A2=2cosA221
79 77 78 syl Acos2A2=2cosA221
80 76 79 eqtr3d AcosA=2cosA221
81 80 oveq2d A1+cosA=1+2cosA22-1
82 81 oveq1d A1+cosA2=1+2cosA22-12
83 77 coscld AcosA2
84 83 sqcld AcosA22
85 mulcl 2cosA222cosA22
86 42 85 mpan cosA222cosA22
87 pncan3 12cosA221+2cosA22-1=2cosA22
88 68 86 87 sylancr cosA221+2cosA22-1=2cosA22
89 88 oveq1d cosA221+2cosA22-12=2cosA222
90 divcan3 cosA222202cosA222=cosA22
91 42 43 90 mp3an23 cosA222cosA222=cosA22
92 89 91 eqtrd cosA221+2cosA22-12=cosA22
93 84 92 syl A1+2cosA22-12=cosA22
94 73 82 93 3eqtrrd AcosA22=1+cosA22
95 67 94 syl AππcosA22=1+cosA22
96 7 34 65 66 95 sq11d AππcosA2=1+cosA2