Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Brendan Leahy
cos2h
Next ⟩
tan2h
Metamath Proof Explorer
Ascii
Unicode
Theorem
cos2h
Description:
Half-angle rule for cosine.
(Contributed by
Brendan Leahy
, 4-Aug-2018)
Ref
Expression
Assertion
cos2h
π
π
⊢
A
∈
−
π
π
→
cos
A
2
=
1
+
cos
A
2
Proof
Step
Hyp
Ref
Expression
1
pire
π
⊢
π
∈
ℝ
2
1
renegcli
π
⊢
−
π
∈
ℝ
3
iccssre
π
π
π
π
⊢
−
π
∈
ℝ
∧
π
∈
ℝ
→
−
π
π
⊆
ℝ
4
2
1
3
mp2an
π
π
⊢
−
π
π
⊆
ℝ
5
4
sseli
π
π
⊢
A
∈
−
π
π
→
A
∈
ℝ
6
5
rehalfcld
π
π
⊢
A
∈
−
π
π
→
A
2
∈
ℝ
7
6
recoscld
π
π
⊢
A
∈
−
π
π
→
cos
A
2
∈
ℝ
8
1re
⊢
1
∈
ℝ
9
5
recoscld
π
π
⊢
A
∈
−
π
π
→
cos
A
∈
ℝ
10
readdcl
⊢
1
∈
ℝ
∧
cos
A
∈
ℝ
→
1
+
cos
A
∈
ℝ
11
8
9
10
sylancr
π
π
⊢
A
∈
−
π
π
→
1
+
cos
A
∈
ℝ
12
11
rehalfcld
π
π
⊢
A
∈
−
π
π
→
1
+
cos
A
2
∈
ℝ
13
cosbnd
⊢
A
∈
ℝ
→
−
1
≤
cos
A
∧
cos
A
≤
1
14
13
simpld
⊢
A
∈
ℝ
→
−
1
≤
cos
A
15
recoscl
⊢
A
∈
ℝ
→
cos
A
∈
ℝ
16
recn
⊢
cos
A
∈
ℝ
→
cos
A
∈
ℂ
17
recn
⊢
1
∈
ℝ
→
1
∈
ℂ
18
subneg
⊢
cos
A
∈
ℂ
∧
1
∈
ℂ
→
cos
A
−
-1
=
cos
A
+
1
19
addcom
⊢
1
∈
ℂ
∧
cos
A
∈
ℂ
→
1
+
cos
A
=
cos
A
+
1
20
19
ancoms
⊢
cos
A
∈
ℂ
∧
1
∈
ℂ
→
1
+
cos
A
=
cos
A
+
1
21
18
20
eqtr4d
⊢
cos
A
∈
ℂ
∧
1
∈
ℂ
→
cos
A
−
-1
=
1
+
cos
A
22
16
17
21
syl2an
⊢
cos
A
∈
ℝ
∧
1
∈
ℝ
→
cos
A
−
-1
=
1
+
cos
A
23
22
breq2d
⊢
cos
A
∈
ℝ
∧
1
∈
ℝ
→
0
≤
cos
A
−
-1
↔
0
≤
1
+
cos
A
24
renegcl
⊢
1
∈
ℝ
→
−
1
∈
ℝ
25
subge0
⊢
cos
A
∈
ℝ
∧
−
1
∈
ℝ
→
0
≤
cos
A
−
-1
↔
−
1
≤
cos
A
26
24
25
sylan2
⊢
cos
A
∈
ℝ
∧
1
∈
ℝ
→
0
≤
cos
A
−
-1
↔
−
1
≤
cos
A
27
10
ancoms
⊢
cos
A
∈
ℝ
∧
1
∈
ℝ
→
1
+
cos
A
∈
ℝ
28
halfnneg2
⊢
1
+
cos
A
∈
ℝ
→
0
≤
1
+
cos
A
↔
0
≤
1
+
cos
A
2
29
27
28
syl
⊢
cos
A
∈
ℝ
∧
1
∈
ℝ
→
0
≤
1
+
cos
A
↔
0
≤
1
+
cos
A
2
30
23
26
29
3bitr3d
⊢
cos
A
∈
ℝ
∧
1
∈
ℝ
→
−
1
≤
cos
A
↔
0
≤
1
+
cos
A
2
31
15
8
30
sylancl
⊢
A
∈
ℝ
→
−
1
≤
cos
A
↔
0
≤
1
+
cos
A
2
32
14
31
mpbid
⊢
A
∈
ℝ
→
0
≤
1
+
cos
A
2
33
5
32
syl
π
π
⊢
A
∈
−
π
π
→
0
≤
1
+
cos
A
2
34
12
33
resqrtcld
π
π
⊢
A
∈
−
π
π
→
1
+
cos
A
2
∈
ℝ
35
2
1
elicc2i
π
π
π
π
⊢
A
∈
−
π
π
↔
A
∈
ℝ
∧
−
π
≤
A
∧
A
≤
π
36
2re
⊢
2
∈
ℝ
37
2pos
⊢
0
<
2
38
36
37
pm3.2i
⊢
2
∈
ℝ
∧
0
<
2
39
lediv1
π
π
π
⊢
−
π
∈
ℝ
∧
A
∈
ℝ
∧
2
∈
ℝ
∧
0
<
2
→
−
π
≤
A
↔
−
π
2
≤
A
2
40
2
38
39
mp3an13
π
π
⊢
A
∈
ℝ
→
−
π
≤
A
↔
−
π
2
≤
A
2
41
picn
π
⊢
π
∈
ℂ
42
2cn
⊢
2
∈
ℂ
43
2ne0
⊢
2
≠
0
44
divneg
π
π
π
⊢
π
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
−
π
2
=
−
π
2
45
41
42
43
44
mp3an
π
π
⊢
−
π
2
=
−
π
2
46
45
breq1i
π
π
⊢
−
π
2
≤
A
2
↔
−
π
2
≤
A
2
47
40
46
bitr4di
π
π
⊢
A
∈
ℝ
→
−
π
≤
A
↔
−
π
2
≤
A
2
48
lediv1
π
π
π
⊢
A
∈
ℝ
∧
π
∈
ℝ
∧
2
∈
ℝ
∧
0
<
2
→
A
≤
π
↔
A
2
≤
π
2
49
1
38
48
mp3an23
π
π
⊢
A
∈
ℝ
→
A
≤
π
↔
A
2
≤
π
2
50
47
49
anbi12d
π
π
π
π
⊢
A
∈
ℝ
→
−
π
≤
A
∧
A
≤
π
↔
−
π
2
≤
A
2
∧
A
2
≤
π
2
51
rehalfcl
⊢
A
∈
ℝ
→
A
2
∈
ℝ
52
51
rexrd
⊢
A
∈
ℝ
→
A
2
∈
ℝ
*
53
halfpire
π
⊢
π
2
∈
ℝ
54
53
renegcli
π
⊢
−
π
2
∈
ℝ
55
54
rexri
π
⊢
−
π
2
∈
ℝ
*
56
53
rexri
π
⊢
π
2
∈
ℝ
*
57
elicc4
π
π
π
π
π
π
⊢
−
π
2
∈
ℝ
*
∧
π
2
∈
ℝ
*
∧
A
2
∈
ℝ
*
→
A
2
∈
−
π
2
π
2
↔
−
π
2
≤
A
2
∧
A
2
≤
π
2
58
55
56
57
mp3an12
π
π
π
π
⊢
A
2
∈
ℝ
*
→
A
2
∈
−
π
2
π
2
↔
−
π
2
≤
A
2
∧
A
2
≤
π
2
59
52
58
syl
π
π
π
π
⊢
A
∈
ℝ
→
A
2
∈
−
π
2
π
2
↔
−
π
2
≤
A
2
∧
A
2
≤
π
2
60
50
59
bitr4d
π
π
π
π
⊢
A
∈
ℝ
→
−
π
≤
A
∧
A
≤
π
↔
A
2
∈
−
π
2
π
2
61
60
biimpd
π
π
π
π
⊢
A
∈
ℝ
→
−
π
≤
A
∧
A
≤
π
→
A
2
∈
−
π
2
π
2
62
61
3impib
π
π
π
π
⊢
A
∈
ℝ
∧
−
π
≤
A
∧
A
≤
π
→
A
2
∈
−
π
2
π
2
63
35
62
sylbi
π
π
π
π
⊢
A
∈
−
π
π
→
A
2
∈
−
π
2
π
2
64
cosq14ge0
π
π
⊢
A
2
∈
−
π
2
π
2
→
0
≤
cos
A
2
65
63
64
syl
π
π
⊢
A
∈
−
π
π
→
0
≤
cos
A
2
66
12
33
sqrtge0d
π
π
⊢
A
∈
−
π
π
→
0
≤
1
+
cos
A
2
67
5
recnd
π
π
⊢
A
∈
−
π
π
→
A
∈
ℂ
68
ax-1cn
⊢
1
∈
ℂ
69
coscl
⊢
A
∈
ℂ
→
cos
A
∈
ℂ
70
addcl
⊢
1
∈
ℂ
∧
cos
A
∈
ℂ
→
1
+
cos
A
∈
ℂ
71
68
69
70
sylancr
⊢
A
∈
ℂ
→
1
+
cos
A
∈
ℂ
72
71
halfcld
⊢
A
∈
ℂ
→
1
+
cos
A
2
∈
ℂ
73
72
sqsqrtd
⊢
A
∈
ℂ
→
1
+
cos
A
2
2
=
1
+
cos
A
2
74
divcan2
⊢
A
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
2
A
2
=
A
75
42
43
74
mp3an23
⊢
A
∈
ℂ
→
2
A
2
=
A
76
75
fveq2d
⊢
A
∈
ℂ
→
cos
2
A
2
=
cos
A
77
halfcl
⊢
A
∈
ℂ
→
A
2
∈
ℂ
78
cos2t
⊢
A
2
∈
ℂ
→
cos
2
A
2
=
2
cos
A
2
2
−
1
79
77
78
syl
⊢
A
∈
ℂ
→
cos
2
A
2
=
2
cos
A
2
2
−
1
80
76
79
eqtr3d
⊢
A
∈
ℂ
→
cos
A
=
2
cos
A
2
2
−
1
81
80
oveq2d
⊢
A
∈
ℂ
→
1
+
cos
A
=
1
+
2
cos
A
2
2
-
1
82
81
oveq1d
⊢
A
∈
ℂ
→
1
+
cos
A
2
=
1
+
2
cos
A
2
2
-
1
2
83
77
coscld
⊢
A
∈
ℂ
→
cos
A
2
∈
ℂ
84
83
sqcld
⊢
A
∈
ℂ
→
cos
A
2
2
∈
ℂ
85
mulcl
⊢
2
∈
ℂ
∧
cos
A
2
2
∈
ℂ
→
2
cos
A
2
2
∈
ℂ
86
42
85
mpan
⊢
cos
A
2
2
∈
ℂ
→
2
cos
A
2
2
∈
ℂ
87
pncan3
⊢
1
∈
ℂ
∧
2
cos
A
2
2
∈
ℂ
→
1
+
2
cos
A
2
2
-
1
=
2
cos
A
2
2
88
68
86
87
sylancr
⊢
cos
A
2
2
∈
ℂ
→
1
+
2
cos
A
2
2
-
1
=
2
cos
A
2
2
89
88
oveq1d
⊢
cos
A
2
2
∈
ℂ
→
1
+
2
cos
A
2
2
-
1
2
=
2
cos
A
2
2
2
90
divcan3
⊢
cos
A
2
2
∈
ℂ
∧
2
∈
ℂ
∧
2
≠
0
→
2
cos
A
2
2
2
=
cos
A
2
2
91
42
43
90
mp3an23
⊢
cos
A
2
2
∈
ℂ
→
2
cos
A
2
2
2
=
cos
A
2
2
92
89
91
eqtrd
⊢
cos
A
2
2
∈
ℂ
→
1
+
2
cos
A
2
2
-
1
2
=
cos
A
2
2
93
84
92
syl
⊢
A
∈
ℂ
→
1
+
2
cos
A
2
2
-
1
2
=
cos
A
2
2
94
73
82
93
3eqtrrd
⊢
A
∈
ℂ
→
cos
A
2
2
=
1
+
cos
A
2
2
95
67
94
syl
π
π
⊢
A
∈
−
π
π
→
cos
A
2
2
=
1
+
cos
A
2
2
96
7
34
65
66
95
sq11d
π
π
⊢
A
∈
−
π
π
→
cos
A
2
=
1
+
cos
A
2