Metamath Proof Explorer


Theorem cosknegpi

Description: The cosine of an integer multiple of negative _pi is either 1 or negative 1 . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion cosknegpi KcosKπ=if2K11

Proof

Step Hyp Ref Expression
1 simpr K2K2K
2 2z 2
3 simpl K2KK
4 divides 2K2Knn2=K
5 2 3 4 sylancr K2K2Knn2=K
6 1 5 mpbid K2Knn2=K
7 zcn nn
8 negcl nn
9 2cn 2
10 picn π
11 9 10 mulcli 2π
12 11 a1i n2π
13 8 12 mulcld nn2π
14 13 addlidd n0+n2π=n2π
15 2cnd n2
16 10 a1i nπ
17 8 15 16 mulassd nn2π=n2π
18 17 eqcomd nn2π=n2π
19 id nn
20 19 15 mulneg1d nn2=n2
21 20 oveq1d nn2π=n2π
22 14 18 21 3eqtrd n0+n2π=n2π
23 7 22 syl n0+n2π=n2π
24 23 adantr nn2=K0+n2π=n2π
25 19 15 mulcld nn2
26 mulneg12 n2πn2π=n2π
27 25 16 26 syl2anc nn2π=n2π
28 7 27 syl nn2π=n2π
29 28 adantr nn2=Kn2π=n2π
30 oveq1 n2=Kn2π=Kπ
31 30 adantl nn2=Kn2π=Kπ
32 24 29 31 3eqtrrd nn2=KKπ=0+n2π
33 32 fveq2d nn2=KcosKπ=cos0+n2π
34 33 3adant1 2Knn2=KcosKπ=cos0+n2π
35 0cnd n0
36 znegcl nn
37 cosper 0ncos0+n2π=cos0
38 35 36 37 syl2anc ncos0+n2π=cos0
39 38 3ad2ant2 2Knn2=Kcos0+n2π=cos0
40 cos0 cos0=1
41 iftrue 2Kif2K11=1
42 40 41 eqtr4id 2Kcos0=if2K11
43 42 3ad2ant1 2Knn2=Kcos0=if2K11
44 34 39 43 3eqtrd 2Knn2=KcosKπ=if2K11
45 44 3exp 2Knn2=KcosKπ=if2K11
46 45 adantl K2Knn2=KcosKπ=if2K11
47 46 rexlimdv K2Knn2=KcosKπ=if2K11
48 6 47 mpd K2KcosKπ=if2K11
49 odd2np1 K¬2Kn2n+1=K
50 49 biimpa K¬2Kn2n+1=K
51 oveq1 2n+1=K2n+1π=Kπ
52 51 eqcomd 2n+1=KKπ=2n+1π
53 52 adantl n2n+1=KKπ=2n+1π
54 15 19 mulcld n2n
55 1cnd n1
56 negpicn π
57 56 a1i nπ
58 54 55 57 adddird n2n+1π=2nπ+1π
59 7 58 syl n2n+1π=2nπ+1π
60 59 adantr n2n+1=K2n+1π=2nπ+1π
61 mulneg12 2nπ2nπ=2nπ
62 54 16 61 syl2anc n2nπ=2nπ
63 62 eqcomd n2nπ=2nπ
64 15 19 mulneg2d n2n=2n
65 15 8 mulcomd n2n=n2
66 64 65 eqtr3d n2n=n2
67 66 oveq1d n2nπ=n2π
68 63 67 17 3eqtrd n2nπ=n2π
69 57 mullidd n1π=π
70 68 69 oveq12d n2nπ+1π=n2π+π
71 13 57 addcomd nn2π+π=-π+n2π
72 70 71 eqtrd n2nπ+1π=-π+n2π
73 7 72 syl n2nπ+1π=-π+n2π
74 73 adantr n2n+1=K2nπ+1π=-π+n2π
75 53 60 74 3eqtrd n2n+1=KKπ=-π+n2π
76 75 3adant1 Kn2n+1=KKπ=-π+n2π
77 76 fveq2d Kn2n+1=KcosKπ=cos-π+n2π
78 77 3adant1r K¬2Kn2n+1=KcosKπ=cos-π+n2π
79 cosper πncos-π+n2π=cosπ
80 56 36 79 sylancr ncos-π+n2π=cosπ
81 80 3ad2ant2 K¬2Kn2n+1=Kcos-π+n2π=cosπ
82 cosnegpi cosπ=1
83 iffalse ¬2Kif2K11=1
84 82 83 eqtr4id ¬2Kcosπ=if2K11
85 84 adantl K¬2Kcosπ=if2K11
86 85 3ad2ant1 K¬2Kn2n+1=Kcosπ=if2K11
87 78 81 86 3eqtrd K¬2Kn2n+1=KcosKπ=if2K11
88 87 rexlimdv3a K¬2Kn2n+1=KcosKπ=if2K11
89 50 88 mpd K¬2KcosKπ=if2K11
90 48 89 pm2.61dan KcosKπ=if2K11