Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of all numbers except possibly the negative reals. (Contributed by Mario Carneiro, 8-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cphsca.f | |
|
cphsca.k | |
||
Assertion | cphsqrtcl2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cphsca.f | |
|
2 | cphsca.k | |
|
3 | sqrt0 | |
|
4 | fveq2 | |
|
5 | id | |
|
6 | 3 4 5 | 3eqtr4a | |
7 | 6 | adantl | |
8 | simpl2 | |
|
9 | 7 8 | eqeltrd | |
10 | simpl1 | |
|
11 | 1 2 | cphsubrg | |
12 | 10 11 | syl | |
13 | cnfldbas | |
|
14 | 13 | subrgss | |
15 | 12 14 | syl | |
16 | simpl2 | |
|
17 | 1 2 | cphabscl | |
18 | 10 16 17 | syl2anc | |
19 | 15 16 | sseldd | |
20 | 19 | abscld | |
21 | 19 | absge0d | |
22 | 1 2 | cphsqrtcl | |
23 | 10 18 20 21 22 | syl13anc | |
24 | cnfldadd | |
|
25 | 24 | subrgacl | |
26 | 12 18 16 25 | syl3anc | |
27 | 1 2 | cphabscl | |
28 | 10 26 27 | syl2anc | |
29 | 15 26 | sseldd | |
30 | simpl3 | |
|
31 | 20 | recnd | |
32 | 31 19 | subnegd | |
33 | 32 | eqeq1d | |
34 | 19 | negcld | |
35 | 31 34 | subeq0ad | |
36 | 33 35 | bitr3d | |
37 | absrpcl | |
|
38 | 19 37 | sylancom | |
39 | eleq1 | |
|
40 | 38 39 | syl5ibcom | |
41 | 36 40 | sylbid | |
42 | 41 | necon3bd | |
43 | 30 42 | mpd | |
44 | 29 43 | absne0d | |
45 | 1 2 | cphdivcl | |
46 | 10 26 28 44 45 | syl13anc | |
47 | cnfldmul | |
|
48 | 47 | subrgmcl | |
49 | 12 23 46 48 | syl3anc | |
50 | 15 49 | sseldd | |
51 | eqid | |
|
52 | 51 | sqreulem | |
53 | 19 43 52 | syl2anc | |
54 | 53 | simp1d | |
55 | 53 | simp2d | |
56 | 53 | simp3d | |
57 | df-nel | |
|
58 | 56 57 | sylib | |
59 | 50 19 54 55 58 | eqsqrtd | |
60 | 59 49 | eqeltrrd | |
61 | 9 60 | pm2.61dane | |