Metamath Proof Explorer


Theorem cphsqrtcl2

Description: The scalar field of a subcomplex pre-Hilbert space is closed under square roots of all numbers except possibly the negative reals. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses cphsca.f F=ScalarW
cphsca.k K=BaseF
Assertion cphsqrtcl2 WCPreHilAK¬A+AK

Proof

Step Hyp Ref Expression
1 cphsca.f F=ScalarW
2 cphsca.k K=BaseF
3 sqrt0 0=0
4 fveq2 A=0A=0
5 id A=0A=0
6 3 4 5 3eqtr4a A=0A=A
7 6 adantl WCPreHilAK¬A+A=0A=A
8 simpl2 WCPreHilAK¬A+A=0AK
9 7 8 eqeltrd WCPreHilAK¬A+A=0AK
10 simpl1 WCPreHilAK¬A+A0WCPreHil
11 1 2 cphsubrg WCPreHilKSubRingfld
12 10 11 syl WCPreHilAK¬A+A0KSubRingfld
13 cnfldbas =Basefld
14 13 subrgss KSubRingfldK
15 12 14 syl WCPreHilAK¬A+A0K
16 simpl2 WCPreHilAK¬A+A0AK
17 1 2 cphabscl WCPreHilAKAK
18 10 16 17 syl2anc WCPreHilAK¬A+A0AK
19 15 16 sseldd WCPreHilAK¬A+A0A
20 19 abscld WCPreHilAK¬A+A0A
21 19 absge0d WCPreHilAK¬A+A00A
22 1 2 cphsqrtcl WCPreHilAKA0AAK
23 10 18 20 21 22 syl13anc WCPreHilAK¬A+A0AK
24 cnfldadd +=+fld
25 24 subrgacl KSubRingfldAKAKA+AK
26 12 18 16 25 syl3anc WCPreHilAK¬A+A0A+AK
27 1 2 cphabscl WCPreHilA+AKA+AK
28 10 26 27 syl2anc WCPreHilAK¬A+A0A+AK
29 15 26 sseldd WCPreHilAK¬A+A0A+A
30 simpl3 WCPreHilAK¬A+A0¬A+
31 20 recnd WCPreHilAK¬A+A0A
32 31 19 subnegd WCPreHilAK¬A+A0AA=A+A
33 32 eqeq1d WCPreHilAK¬A+A0AA=0A+A=0
34 19 negcld WCPreHilAK¬A+A0A
35 31 34 subeq0ad WCPreHilAK¬A+A0AA=0A=A
36 33 35 bitr3d WCPreHilAK¬A+A0A+A=0A=A
37 absrpcl AA0A+
38 19 37 sylancom WCPreHilAK¬A+A0A+
39 eleq1 A=AA+A+
40 38 39 syl5ibcom WCPreHilAK¬A+A0A=AA+
41 36 40 sylbid WCPreHilAK¬A+A0A+A=0A+
42 41 necon3bd WCPreHilAK¬A+A0¬A+A+A0
43 30 42 mpd WCPreHilAK¬A+A0A+A0
44 29 43 absne0d WCPreHilAK¬A+A0A+A0
45 1 2 cphdivcl WCPreHilA+AKA+AKA+A0A+AA+AK
46 10 26 28 44 45 syl13anc WCPreHilAK¬A+A0A+AA+AK
47 cnfldmul ×=fld
48 47 subrgmcl KSubRingfldAKA+AA+AKAA+AA+AK
49 12 23 46 48 syl3anc WCPreHilAK¬A+A0AA+AA+AK
50 15 49 sseldd WCPreHilAK¬A+A0AA+AA+A
51 eqid AA+AA+A=AA+AA+A
52 51 sqreulem AA+A0AA+AA+A2=A0AA+AA+AiAA+AA+A+
53 19 43 52 syl2anc WCPreHilAK¬A+A0AA+AA+A2=A0AA+AA+AiAA+AA+A+
54 53 simp1d WCPreHilAK¬A+A0AA+AA+A2=A
55 53 simp2d WCPreHilAK¬A+A00AA+AA+A
56 53 simp3d WCPreHilAK¬A+A0iAA+AA+A+
57 df-nel iAA+AA+A+¬iAA+AA+A+
58 56 57 sylib WCPreHilAK¬A+A0¬iAA+AA+A+
59 50 19 54 55 58 eqsqrtd WCPreHilAK¬A+A0AA+AA+A=A
60 59 49 eqeltrrd WCPreHilAK¬A+A0AK
61 9 60 pm2.61dane WCPreHilAK¬A+AK