Database
BASIC LINEAR ALGEBRA
Polynomial matrices
Constant polynomial matrices
cpmatmcllem
Next ⟩
cpmatmcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
cpmatmcllem
Description:
Lemma for
cpmatmcl
.
(Contributed by
AV
, 18-Nov-2019)
Ref
Expression
Hypotheses
cpmatsrngpmat.s
⊢
S
=
N
ConstPolyMat
R
cpmatsrngpmat.p
⊢
P
=
Poly
1
R
cpmatsrngpmat.c
⊢
C
=
N
Mat
P
Assertion
cpmatmcllem
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
S
∧
y
∈
S
→
∀
i
∈
N
∀
j
∈
N
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
Proof
Step
Hyp
Ref
Expression
1
cpmatsrngpmat.s
⊢
S
=
N
ConstPolyMat
R
2
cpmatsrngpmat.p
⊢
P
=
Poly
1
R
3
cpmatsrngpmat.c
⊢
C
=
N
Mat
P
4
eqid
⊢
Base
C
=
Base
C
5
1
2
3
4
cpmatelimp
⊢
N
∈
Fin
∧
R
∈
Ring
→
x
∈
S
→
x
∈
Base
C
∧
∀
i
∈
N
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
6
1
2
3
4
cpmatelimp
⊢
N
∈
Fin
∧
R
∈
Ring
→
y
∈
S
→
y
∈
Base
C
∧
∀
l
∈
N
∀
j
∈
N
∀
c
∈
ℕ
coe
1
l
y
j
c
=
0
R
7
6
adantr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
→
y
∈
S
→
y
∈
Base
C
∧
∀
l
∈
N
∀
j
∈
N
∀
c
∈
ℕ
coe
1
l
y
j
c
=
0
R
8
ralcom
⊢
∀
l
∈
N
∀
j
∈
N
∀
c
∈
ℕ
coe
1
l
y
j
c
=
0
R
↔
∀
j
∈
N
∀
l
∈
N
∀
c
∈
ℕ
coe
1
l
y
j
c
=
0
R
9
r19.26-2
⊢
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
↔
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
∧
∀
l
∈
N
∀
c
∈
ℕ
coe
1
l
y
j
c
=
0
R
10
ralcom
⊢
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
↔
∀
c
∈
ℕ
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
11
9
10
bitr3i
⊢
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
∧
∀
l
∈
N
∀
c
∈
ℕ
coe
1
l
y
j
c
=
0
R
↔
∀
c
∈
ℕ
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
12
nfv
⊢
Ⅎ
c
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
13
nfra1
⊢
Ⅎ
c
∀
c
∈
ℕ
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
14
12
13
nfan
⊢
Ⅎ
c
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
∀
c
∈
ℕ
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
15
simp-4r
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
k
∈
N
→
R
∈
Ring
16
eqid
⊢
Base
P
=
Base
P
17
simplrl
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
k
∈
N
→
i
∈
N
18
simpr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
k
∈
N
→
k
∈
N
19
simplrl
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
→
x
∈
Base
C
20
19
adantr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
k
∈
N
→
x
∈
Base
C
21
3
16
4
17
18
20
matecld
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
k
∈
N
→
i
x
k
∈
Base
P
22
simplrr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
k
∈
N
→
j
∈
N
23
simplrr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
→
y
∈
Base
C
24
23
adantr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
k
∈
N
→
y
∈
Base
C
25
3
16
4
18
22
24
matecld
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
k
∈
N
→
k
y
j
∈
Base
P
26
15
21
25
jca32
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
k
∈
N
→
R
∈
Ring
∧
i
x
k
∈
Base
P
∧
k
y
j
∈
Base
P
27
26
adantlr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
∀
c
∈
ℕ
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
∧
k
∈
N
→
R
∈
Ring
∧
i
x
k
∈
Base
P
∧
k
y
j
∈
Base
P
28
oveq2
⊢
l
=
k
→
i
x
l
=
i
x
k
29
28
fveq2d
⊢
l
=
k
→
coe
1
i
x
l
=
coe
1
i
x
k
30
29
fveq1d
⊢
l
=
k
→
coe
1
i
x
l
c
=
coe
1
i
x
k
c
31
30
eqeq1d
⊢
l
=
k
→
coe
1
i
x
l
c
=
0
R
↔
coe
1
i
x
k
c
=
0
R
32
fvoveq1
⊢
l
=
k
→
coe
1
l
y
j
=
coe
1
k
y
j
33
32
fveq1d
⊢
l
=
k
→
coe
1
l
y
j
c
=
coe
1
k
y
j
c
34
33
eqeq1d
⊢
l
=
k
→
coe
1
l
y
j
c
=
0
R
↔
coe
1
k
y
j
c
=
0
R
35
31
34
anbi12d
⊢
l
=
k
→
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
↔
coe
1
i
x
k
c
=
0
R
∧
coe
1
k
y
j
c
=
0
R
36
35
rspcva
⊢
k
∈
N
∧
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
→
coe
1
i
x
k
c
=
0
R
∧
coe
1
k
y
j
c
=
0
R
37
36
a1i
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
c
∈
ℕ
→
k
∈
N
∧
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
→
coe
1
i
x
k
c
=
0
R
∧
coe
1
k
y
j
c
=
0
R
38
37
exp4b
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
→
c
∈
ℕ
→
k
∈
N
→
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
→
coe
1
i
x
k
c
=
0
R
∧
coe
1
k
y
j
c
=
0
R
39
38
com23
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
→
k
∈
N
→
c
∈
ℕ
→
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
→
coe
1
i
x
k
c
=
0
R
∧
coe
1
k
y
j
c
=
0
R
40
39
imp31
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
k
∈
N
∧
c
∈
ℕ
→
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
→
coe
1
i
x
k
c
=
0
R
∧
coe
1
k
y
j
c
=
0
R
41
40
ralimdva
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
k
∈
N
→
∀
c
∈
ℕ
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
→
∀
c
∈
ℕ
coe
1
i
x
k
c
=
0
R
∧
coe
1
k
y
j
c
=
0
R
42
41
impancom
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
∀
c
∈
ℕ
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
→
k
∈
N
→
∀
c
∈
ℕ
coe
1
i
x
k
c
=
0
R
∧
coe
1
k
y
j
c
=
0
R
43
42
imp
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
∀
c
∈
ℕ
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
∧
k
∈
N
→
∀
c
∈
ℕ
coe
1
i
x
k
c
=
0
R
∧
coe
1
k
y
j
c
=
0
R
44
eqid
⊢
0
R
=
0
R
45
eqid
⊢
⋅
P
=
⋅
P
46
2
16
44
45
cply1mul
⊢
R
∈
Ring
∧
i
x
k
∈
Base
P
∧
k
y
j
∈
Base
P
→
∀
c
∈
ℕ
coe
1
i
x
k
c
=
0
R
∧
coe
1
k
y
j
c
=
0
R
→
∀
c
∈
ℕ
coe
1
i
x
k
⋅
P
k
y
j
c
=
0
R
47
27
43
46
sylc
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
∀
c
∈
ℕ
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
∧
k
∈
N
→
∀
c
∈
ℕ
coe
1
i
x
k
⋅
P
k
y
j
c
=
0
R
48
47
r19.21bi
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
∀
c
∈
ℕ
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
∧
k
∈
N
∧
c
∈
ℕ
→
coe
1
i
x
k
⋅
P
k
y
j
c
=
0
R
49
48
an32s
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
∀
c
∈
ℕ
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
∧
c
∈
ℕ
∧
k
∈
N
→
coe
1
i
x
k
⋅
P
k
y
j
c
=
0
R
50
49
mpteq2dva
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
∀
c
∈
ℕ
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
∧
c
∈
ℕ
→
k
∈
N
⟼
coe
1
i
x
k
⋅
P
k
y
j
c
=
k
∈
N
⟼
0
R
51
50
oveq2d
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
∀
c
∈
ℕ
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
∧
c
∈
ℕ
→
∑
R
k
∈
N
coe
1
i
x
k
⋅
P
k
y
j
c
=
∑
R
k
∈
N
0
R
52
ringmnd
⊢
R
∈
Ring
→
R
∈
Mnd
53
52
anim2i
⊢
N
∈
Fin
∧
R
∈
Ring
→
N
∈
Fin
∧
R
∈
Mnd
54
53
ancomd
⊢
N
∈
Fin
∧
R
∈
Ring
→
R
∈
Mnd
∧
N
∈
Fin
55
44
gsumz
⊢
R
∈
Mnd
∧
N
∈
Fin
→
∑
R
k
∈
N
0
R
=
0
R
56
54
55
syl
⊢
N
∈
Fin
∧
R
∈
Ring
→
∑
R
k
∈
N
0
R
=
0
R
57
56
ad4antr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
∀
c
∈
ℕ
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
∧
c
∈
ℕ
→
∑
R
k
∈
N
0
R
=
0
R
58
51
57
eqtrd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
∀
c
∈
ℕ
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
∧
c
∈
ℕ
→
∑
R
k
∈
N
coe
1
i
x
k
⋅
P
k
y
j
c
=
0
R
59
58
ex
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
∀
c
∈
ℕ
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
→
c
∈
ℕ
→
∑
R
k
∈
N
coe
1
i
x
k
⋅
P
k
y
j
c
=
0
R
60
14
59
ralrimi
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
∀
c
∈
ℕ
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
→
∀
c
∈
ℕ
∑
R
k
∈
N
coe
1
i
x
k
⋅
P
k
y
j
c
=
0
R
61
simp-4r
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
c
∈
ℕ
→
R
∈
Ring
62
nnnn0
⊢
c
∈
ℕ
→
c
∈
ℕ
0
63
62
adantl
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
c
∈
ℕ
→
c
∈
ℕ
0
64
2
ply1ring
⊢
R
∈
Ring
→
P
∈
Ring
65
64
ad4antlr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
k
∈
N
→
P
∈
Ring
66
16
45
ringcl
⊢
P
∈
Ring
∧
i
x
k
∈
Base
P
∧
k
y
j
∈
Base
P
→
i
x
k
⋅
P
k
y
j
∈
Base
P
67
65
21
25
66
syl3anc
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
k
∈
N
→
i
x
k
⋅
P
k
y
j
∈
Base
P
68
67
ralrimiva
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
→
∀
k
∈
N
i
x
k
⋅
P
k
y
j
∈
Base
P
69
68
adantr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
c
∈
ℕ
→
∀
k
∈
N
i
x
k
⋅
P
k
y
j
∈
Base
P
70
simp-4l
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
c
∈
ℕ
→
N
∈
Fin
71
2
16
61
63
69
70
coe1fzgsumd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
c
∈
ℕ
→
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
∑
R
k
∈
N
coe
1
i
x
k
⋅
P
k
y
j
c
72
71
eqeq1d
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
c
∈
ℕ
→
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
↔
∑
R
k
∈
N
coe
1
i
x
k
⋅
P
k
y
j
c
=
0
R
73
72
ralbidva
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
→
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
↔
∀
c
∈
ℕ
∑
R
k
∈
N
coe
1
i
x
k
⋅
P
k
y
j
c
=
0
R
74
73
adantr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
∀
c
∈
ℕ
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
→
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
↔
∀
c
∈
ℕ
∑
R
k
∈
N
coe
1
i
x
k
⋅
P
k
y
j
c
=
0
R
75
60
74
mpbird
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
∧
∀
c
∈
ℕ
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
→
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
76
75
ex
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
→
∀
c
∈
ℕ
∀
l
∈
N
coe
1
i
x
l
c
=
0
R
∧
coe
1
l
y
j
c
=
0
R
→
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
77
11
76
biimtrid
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
→
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
∧
∀
l
∈
N
∀
c
∈
ℕ
coe
1
l
y
j
c
=
0
R
→
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
78
77
expd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
j
∈
N
→
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
→
∀
l
∈
N
∀
c
∈
ℕ
coe
1
l
y
j
c
=
0
R
→
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
79
78
expr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
→
j
∈
N
→
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
→
∀
l
∈
N
∀
c
∈
ℕ
coe
1
l
y
j
c
=
0
R
→
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
80
79
com23
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
→
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
→
j
∈
N
→
∀
l
∈
N
∀
c
∈
ℕ
coe
1
l
y
j
c
=
0
R
→
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
81
80
imp31
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
∧
j
∈
N
→
∀
l
∈
N
∀
c
∈
ℕ
coe
1
l
y
j
c
=
0
R
→
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
82
81
ralimdva
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
→
∀
j
∈
N
∀
l
∈
N
∀
c
∈
ℕ
coe
1
l
y
j
c
=
0
R
→
∀
j
∈
N
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
83
8
82
biimtrid
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
∧
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
→
∀
l
∈
N
∀
j
∈
N
∀
c
∈
ℕ
coe
1
l
y
j
c
=
0
R
→
∀
j
∈
N
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
84
83
ex
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
→
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
→
∀
l
∈
N
∀
j
∈
N
∀
c
∈
ℕ
coe
1
l
y
j
c
=
0
R
→
∀
j
∈
N
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
85
84
com23
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
i
∈
N
→
∀
l
∈
N
∀
j
∈
N
∀
c
∈
ℕ
coe
1
l
y
j
c
=
0
R
→
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
→
∀
j
∈
N
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
86
85
impancom
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
∀
l
∈
N
∀
j
∈
N
∀
c
∈
ℕ
coe
1
l
y
j
c
=
0
R
→
i
∈
N
→
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
→
∀
j
∈
N
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
87
86
imp
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
∀
l
∈
N
∀
j
∈
N
∀
c
∈
ℕ
coe
1
l
y
j
c
=
0
R
∧
i
∈
N
→
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
→
∀
j
∈
N
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
88
87
ralimdva
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
∧
∀
l
∈
N
∀
j
∈
N
∀
c
∈
ℕ
coe
1
l
y
j
c
=
0
R
→
∀
i
∈
N
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
→
∀
i
∈
N
∀
j
∈
N
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
89
88
ex
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
∧
y
∈
Base
C
→
∀
l
∈
N
∀
j
∈
N
∀
c
∈
ℕ
coe
1
l
y
j
c
=
0
R
→
∀
i
∈
N
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
→
∀
i
∈
N
∀
j
∈
N
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
90
89
expr
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
→
y
∈
Base
C
→
∀
l
∈
N
∀
j
∈
N
∀
c
∈
ℕ
coe
1
l
y
j
c
=
0
R
→
∀
i
∈
N
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
→
∀
i
∈
N
∀
j
∈
N
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
91
90
impd
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
→
y
∈
Base
C
∧
∀
l
∈
N
∀
j
∈
N
∀
c
∈
ℕ
coe
1
l
y
j
c
=
0
R
→
∀
i
∈
N
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
→
∀
i
∈
N
∀
j
∈
N
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
92
7
91
syld
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
→
y
∈
S
→
∀
i
∈
N
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
→
∀
i
∈
N
∀
j
∈
N
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
93
92
com23
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
Base
C
→
∀
i
∈
N
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
→
y
∈
S
→
∀
i
∈
N
∀
j
∈
N
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
94
93
ex
⊢
N
∈
Fin
∧
R
∈
Ring
→
x
∈
Base
C
→
∀
i
∈
N
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
→
y
∈
S
→
∀
i
∈
N
∀
j
∈
N
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
95
94
impd
⊢
N
∈
Fin
∧
R
∈
Ring
→
x
∈
Base
C
∧
∀
i
∈
N
∀
l
∈
N
∀
c
∈
ℕ
coe
1
i
x
l
c
=
0
R
→
y
∈
S
→
∀
i
∈
N
∀
j
∈
N
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
96
5
95
syld
⊢
N
∈
Fin
∧
R
∈
Ring
→
x
∈
S
→
y
∈
S
→
∀
i
∈
N
∀
j
∈
N
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R
97
96
imp32
⊢
N
∈
Fin
∧
R
∈
Ring
∧
x
∈
S
∧
y
∈
S
→
∀
i
∈
N
∀
j
∈
N
∀
c
∈
ℕ
coe
1
∑
P
k
∈
N
i
x
k
⋅
P
k
y
j
c
=
0
R