Metamath Proof Explorer


Theorem cpmatmcllem

Description: Lemma for cpmatmcl . (Contributed by AV, 18-Nov-2019)

Ref Expression
Hypotheses cpmatsrngpmat.s S=NConstPolyMatR
cpmatsrngpmat.p P=Poly1R
cpmatsrngpmat.c C=NMatP
Assertion cpmatmcllem NFinRRingxSySiNjNccoe1PkNixkPkyjc=0R

Proof

Step Hyp Ref Expression
1 cpmatsrngpmat.s S=NConstPolyMatR
2 cpmatsrngpmat.p P=Poly1R
3 cpmatsrngpmat.c C=NMatP
4 eqid BaseC=BaseC
5 1 2 3 4 cpmatelimp NFinRRingxSxBaseCiNlNccoe1ixlc=0R
6 1 2 3 4 cpmatelimp NFinRRingySyBaseClNjNccoe1lyjc=0R
7 6 adantr NFinRRingxBaseCySyBaseClNjNccoe1lyjc=0R
8 ralcom lNjNccoe1lyjc=0RjNlNccoe1lyjc=0R
9 r19.26-2 lNccoe1ixlc=0Rcoe1lyjc=0RlNccoe1ixlc=0RlNccoe1lyjc=0R
10 ralcom lNccoe1ixlc=0Rcoe1lyjc=0RclNcoe1ixlc=0Rcoe1lyjc=0R
11 9 10 bitr3i lNccoe1ixlc=0RlNccoe1lyjc=0RclNcoe1ixlc=0Rcoe1lyjc=0R
12 nfv cNFinRRingxBaseCyBaseCiNjN
13 nfra1 cclNcoe1ixlc=0Rcoe1lyjc=0R
14 12 13 nfan cNFinRRingxBaseCyBaseCiNjNclNcoe1ixlc=0Rcoe1lyjc=0R
15 simp-4r NFinRRingxBaseCyBaseCiNjNkNRRing
16 eqid BaseP=BaseP
17 simplrl NFinRRingxBaseCyBaseCiNjNkNiN
18 simpr NFinRRingxBaseCyBaseCiNjNkNkN
19 simplrl NFinRRingxBaseCyBaseCiNjNxBaseC
20 19 adantr NFinRRingxBaseCyBaseCiNjNkNxBaseC
21 3 16 4 17 18 20 matecld NFinRRingxBaseCyBaseCiNjNkNixkBaseP
22 simplrr NFinRRingxBaseCyBaseCiNjNkNjN
23 simplrr NFinRRingxBaseCyBaseCiNjNyBaseC
24 23 adantr NFinRRingxBaseCyBaseCiNjNkNyBaseC
25 3 16 4 18 22 24 matecld NFinRRingxBaseCyBaseCiNjNkNkyjBaseP
26 15 21 25 jca32 NFinRRingxBaseCyBaseCiNjNkNRRingixkBasePkyjBaseP
27 26 adantlr NFinRRingxBaseCyBaseCiNjNclNcoe1ixlc=0Rcoe1lyjc=0RkNRRingixkBasePkyjBaseP
28 oveq2 l=kixl=ixk
29 28 fveq2d l=kcoe1ixl=coe1ixk
30 29 fveq1d l=kcoe1ixlc=coe1ixkc
31 30 eqeq1d l=kcoe1ixlc=0Rcoe1ixkc=0R
32 fvoveq1 l=kcoe1lyj=coe1kyj
33 32 fveq1d l=kcoe1lyjc=coe1kyjc
34 33 eqeq1d l=kcoe1lyjc=0Rcoe1kyjc=0R
35 31 34 anbi12d l=kcoe1ixlc=0Rcoe1lyjc=0Rcoe1ixkc=0Rcoe1kyjc=0R
36 35 rspcva kNlNcoe1ixlc=0Rcoe1lyjc=0Rcoe1ixkc=0Rcoe1kyjc=0R
37 36 a1i NFinRRingxBaseCyBaseCiNjNckNlNcoe1ixlc=0Rcoe1lyjc=0Rcoe1ixkc=0Rcoe1kyjc=0R
38 37 exp4b NFinRRingxBaseCyBaseCiNjNckNlNcoe1ixlc=0Rcoe1lyjc=0Rcoe1ixkc=0Rcoe1kyjc=0R
39 38 com23 NFinRRingxBaseCyBaseCiNjNkNclNcoe1ixlc=0Rcoe1lyjc=0Rcoe1ixkc=0Rcoe1kyjc=0R
40 39 imp31 NFinRRingxBaseCyBaseCiNjNkNclNcoe1ixlc=0Rcoe1lyjc=0Rcoe1ixkc=0Rcoe1kyjc=0R
41 40 ralimdva NFinRRingxBaseCyBaseCiNjNkNclNcoe1ixlc=0Rcoe1lyjc=0Rccoe1ixkc=0Rcoe1kyjc=0R
42 41 impancom NFinRRingxBaseCyBaseCiNjNclNcoe1ixlc=0Rcoe1lyjc=0RkNccoe1ixkc=0Rcoe1kyjc=0R
43 42 imp NFinRRingxBaseCyBaseCiNjNclNcoe1ixlc=0Rcoe1lyjc=0RkNccoe1ixkc=0Rcoe1kyjc=0R
44 eqid 0R=0R
45 eqid P=P
46 2 16 44 45 cply1mul RRingixkBasePkyjBasePccoe1ixkc=0Rcoe1kyjc=0Rccoe1ixkPkyjc=0R
47 27 43 46 sylc NFinRRingxBaseCyBaseCiNjNclNcoe1ixlc=0Rcoe1lyjc=0RkNccoe1ixkPkyjc=0R
48 47 r19.21bi NFinRRingxBaseCyBaseCiNjNclNcoe1ixlc=0Rcoe1lyjc=0RkNccoe1ixkPkyjc=0R
49 48 an32s NFinRRingxBaseCyBaseCiNjNclNcoe1ixlc=0Rcoe1lyjc=0RckNcoe1ixkPkyjc=0R
50 49 mpteq2dva NFinRRingxBaseCyBaseCiNjNclNcoe1ixlc=0Rcoe1lyjc=0RckNcoe1ixkPkyjc=kN0R
51 50 oveq2d NFinRRingxBaseCyBaseCiNjNclNcoe1ixlc=0Rcoe1lyjc=0RcRkNcoe1ixkPkyjc=RkN0R
52 ringmnd RRingRMnd
53 52 anim2i NFinRRingNFinRMnd
54 53 ancomd NFinRRingRMndNFin
55 44 gsumz RMndNFinRkN0R=0R
56 54 55 syl NFinRRingRkN0R=0R
57 56 ad4antr NFinRRingxBaseCyBaseCiNjNclNcoe1ixlc=0Rcoe1lyjc=0RcRkN0R=0R
58 51 57 eqtrd NFinRRingxBaseCyBaseCiNjNclNcoe1ixlc=0Rcoe1lyjc=0RcRkNcoe1ixkPkyjc=0R
59 58 ex NFinRRingxBaseCyBaseCiNjNclNcoe1ixlc=0Rcoe1lyjc=0RcRkNcoe1ixkPkyjc=0R
60 14 59 ralrimi NFinRRingxBaseCyBaseCiNjNclNcoe1ixlc=0Rcoe1lyjc=0RcRkNcoe1ixkPkyjc=0R
61 simp-4r NFinRRingxBaseCyBaseCiNjNcRRing
62 nnnn0 cc0
63 62 adantl NFinRRingxBaseCyBaseCiNjNcc0
64 2 ply1ring RRingPRing
65 64 ad4antlr NFinRRingxBaseCyBaseCiNjNkNPRing
66 16 45 ringcl PRingixkBasePkyjBasePixkPkyjBaseP
67 65 21 25 66 syl3anc NFinRRingxBaseCyBaseCiNjNkNixkPkyjBaseP
68 67 ralrimiva NFinRRingxBaseCyBaseCiNjNkNixkPkyjBaseP
69 68 adantr NFinRRingxBaseCyBaseCiNjNckNixkPkyjBaseP
70 simp-4l NFinRRingxBaseCyBaseCiNjNcNFin
71 2 16 61 63 69 70 coe1fzgsumd NFinRRingxBaseCyBaseCiNjNccoe1PkNixkPkyjc=RkNcoe1ixkPkyjc
72 71 eqeq1d NFinRRingxBaseCyBaseCiNjNccoe1PkNixkPkyjc=0RRkNcoe1ixkPkyjc=0R
73 72 ralbidva NFinRRingxBaseCyBaseCiNjNccoe1PkNixkPkyjc=0RcRkNcoe1ixkPkyjc=0R
74 73 adantr NFinRRingxBaseCyBaseCiNjNclNcoe1ixlc=0Rcoe1lyjc=0Rccoe1PkNixkPkyjc=0RcRkNcoe1ixkPkyjc=0R
75 60 74 mpbird NFinRRingxBaseCyBaseCiNjNclNcoe1ixlc=0Rcoe1lyjc=0Rccoe1PkNixkPkyjc=0R
76 75 ex NFinRRingxBaseCyBaseCiNjNclNcoe1ixlc=0Rcoe1lyjc=0Rccoe1PkNixkPkyjc=0R
77 11 76 biimtrid NFinRRingxBaseCyBaseCiNjNlNccoe1ixlc=0RlNccoe1lyjc=0Rccoe1PkNixkPkyjc=0R
78 77 expd NFinRRingxBaseCyBaseCiNjNlNccoe1ixlc=0RlNccoe1lyjc=0Rccoe1PkNixkPkyjc=0R
79 78 expr NFinRRingxBaseCyBaseCiNjNlNccoe1ixlc=0RlNccoe1lyjc=0Rccoe1PkNixkPkyjc=0R
80 79 com23 NFinRRingxBaseCyBaseCiNlNccoe1ixlc=0RjNlNccoe1lyjc=0Rccoe1PkNixkPkyjc=0R
81 80 imp31 NFinRRingxBaseCyBaseCiNlNccoe1ixlc=0RjNlNccoe1lyjc=0Rccoe1PkNixkPkyjc=0R
82 81 ralimdva NFinRRingxBaseCyBaseCiNlNccoe1ixlc=0RjNlNccoe1lyjc=0RjNccoe1PkNixkPkyjc=0R
83 8 82 biimtrid NFinRRingxBaseCyBaseCiNlNccoe1ixlc=0RlNjNccoe1lyjc=0RjNccoe1PkNixkPkyjc=0R
84 83 ex NFinRRingxBaseCyBaseCiNlNccoe1ixlc=0RlNjNccoe1lyjc=0RjNccoe1PkNixkPkyjc=0R
85 84 com23 NFinRRingxBaseCyBaseCiNlNjNccoe1lyjc=0RlNccoe1ixlc=0RjNccoe1PkNixkPkyjc=0R
86 85 impancom NFinRRingxBaseCyBaseClNjNccoe1lyjc=0RiNlNccoe1ixlc=0RjNccoe1PkNixkPkyjc=0R
87 86 imp NFinRRingxBaseCyBaseClNjNccoe1lyjc=0RiNlNccoe1ixlc=0RjNccoe1PkNixkPkyjc=0R
88 87 ralimdva NFinRRingxBaseCyBaseClNjNccoe1lyjc=0RiNlNccoe1ixlc=0RiNjNccoe1PkNixkPkyjc=0R
89 88 ex NFinRRingxBaseCyBaseClNjNccoe1lyjc=0RiNlNccoe1ixlc=0RiNjNccoe1PkNixkPkyjc=0R
90 89 expr NFinRRingxBaseCyBaseClNjNccoe1lyjc=0RiNlNccoe1ixlc=0RiNjNccoe1PkNixkPkyjc=0R
91 90 impd NFinRRingxBaseCyBaseClNjNccoe1lyjc=0RiNlNccoe1ixlc=0RiNjNccoe1PkNixkPkyjc=0R
92 7 91 syld NFinRRingxBaseCySiNlNccoe1ixlc=0RiNjNccoe1PkNixkPkyjc=0R
93 92 com23 NFinRRingxBaseCiNlNccoe1ixlc=0RySiNjNccoe1PkNixkPkyjc=0R
94 93 ex NFinRRingxBaseCiNlNccoe1ixlc=0RySiNjNccoe1PkNixkPkyjc=0R
95 94 impd NFinRRingxBaseCiNlNccoe1ixlc=0RySiNjNccoe1PkNixkPkyjc=0R
96 5 95 syld NFinRRingxSySiNjNccoe1PkNixkPkyjc=0R
97 96 imp32 NFinRRingxSySiNjNccoe1PkNixkPkyjc=0R