Description: Lemma 3 for cpmidpmat . (Contributed by AV, 14-Nov-2019) (Proof shortened by AV, 7-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cpmidgsum.a | |
|
cpmidgsum.b | |
||
cpmidgsum.p | |
||
cpmidgsum.y | |
||
cpmidgsum.x | |
||
cpmidgsum.e | |
||
cpmidgsum.m | |
||
cpmidgsum.1 | |
||
cpmidgsum.u | |
||
cpmidgsum.c | |
||
cpmidgsum.k | |
||
cpmidgsum.h | |
||
cpmidgsumm2pm.o | |
||
cpmidgsumm2pm.m | |
||
cpmidgsumm2pm.t | |
||
cpmidpmat.g | |
||
Assertion | cpmidpmatlem3 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cpmidgsum.a | |
|
2 | cpmidgsum.b | |
|
3 | cpmidgsum.p | |
|
4 | cpmidgsum.y | |
|
5 | cpmidgsum.x | |
|
6 | cpmidgsum.e | |
|
7 | cpmidgsum.m | |
|
8 | cpmidgsum.1 | |
|
9 | cpmidgsum.u | |
|
10 | cpmidgsum.c | |
|
11 | cpmidgsum.k | |
|
12 | cpmidgsum.h | |
|
13 | cpmidgsumm2pm.o | |
|
14 | cpmidgsumm2pm.m | |
|
15 | cpmidgsumm2pm.t | |
|
16 | cpmidpmat.g | |
|
17 | fvexd | |
|
18 | ovexd | |
|
19 | fveq2 | |
|
20 | 19 | oveq1d | |
21 | fvexd | |
|
22 | eqid | |
|
23 | 10 1 2 3 22 | chpmatply1 | |
24 | 11 23 | eqeltrid | |
25 | eqid | |
|
26 | eqid | |
|
27 | 25 22 3 26 | coe1fvalcl | |
28 | 24 27 | sylan | |
29 | crngring | |
|
30 | 29 | 3ad2ant2 | |
31 | eqid | |
|
32 | 3 22 31 | mptcoe1fsupp | |
33 | 30 24 32 | syl2anc | |
34 | 21 28 33 | mptnn0fsuppr | |
35 | csbfv | |
|
36 | 35 | a1i | |
37 | 36 | eqeq1d | |
38 | 37 | biimpa | |
39 | 1 | matsca2 | |
40 | 39 | 3adant3 | |
41 | 40 | ad2antrr | |
42 | 41 | fveq2d | |
43 | 38 42 | eqtrd | |
44 | 43 | oveq1d | |
45 | 1 | matlmod | |
46 | 29 45 | sylan2 | |
47 | 46 | 3adant3 | |
48 | 1 | matring | |
49 | 29 48 | sylan2 | |
50 | 2 13 | ringidcl | |
51 | 49 50 | syl | |
52 | 51 | 3adant3 | |
53 | eqid | |
|
54 | eqid | |
|
55 | eqid | |
|
56 | 2 53 14 54 55 | lmod0vs | |
57 | 47 52 56 | syl2anc | |
58 | 57 | ad2antrr | |
59 | 44 58 | eqtrd | |
60 | 59 | ex | |
61 | 60 | imim2d | |
62 | 61 | ralimdva | |
63 | 62 | reximdv | |
64 | 34 63 | mpd | |
65 | 17 18 20 64 | mptnn0fsuppd | |
66 | 16 65 | eqbrtrid | |