Metamath Proof Explorer


Theorem cpmidpmatlem3

Description: Lemma 3 for cpmidpmat . (Contributed by AV, 14-Nov-2019) (Proof shortened by AV, 7-Dec-2019)

Ref Expression
Hypotheses cpmidgsum.a A=NMatR
cpmidgsum.b B=BaseA
cpmidgsum.p P=Poly1R
cpmidgsum.y Y=NMatP
cpmidgsum.x X=var1R
cpmidgsum.e ×˙=mulGrpP
cpmidgsum.m ·˙=Y
cpmidgsum.1 1˙=1Y
cpmidgsum.u U=algScP
cpmidgsum.c C=NCharPlyMatR
cpmidgsum.k K=CM
cpmidgsum.h H=K·˙1˙
cpmidgsumm2pm.o O=1A
cpmidgsumm2pm.m ˙=A
cpmidgsumm2pm.t T=NmatToPolyMatR
cpmidpmat.g G=k0coe1Kk˙O
Assertion cpmidpmatlem3 NFinRCRingMBfinSupp0AG

Proof

Step Hyp Ref Expression
1 cpmidgsum.a A=NMatR
2 cpmidgsum.b B=BaseA
3 cpmidgsum.p P=Poly1R
4 cpmidgsum.y Y=NMatP
5 cpmidgsum.x X=var1R
6 cpmidgsum.e ×˙=mulGrpP
7 cpmidgsum.m ·˙=Y
8 cpmidgsum.1 1˙=1Y
9 cpmidgsum.u U=algScP
10 cpmidgsum.c C=NCharPlyMatR
11 cpmidgsum.k K=CM
12 cpmidgsum.h H=K·˙1˙
13 cpmidgsumm2pm.o O=1A
14 cpmidgsumm2pm.m ˙=A
15 cpmidgsumm2pm.t T=NmatToPolyMatR
16 cpmidpmat.g G=k0coe1Kk˙O
17 fvexd NFinRCRingMB0AV
18 ovexd NFinRCRingMBk0coe1Kk˙OV
19 fveq2 k=lcoe1Kk=coe1Kl
20 19 oveq1d k=lcoe1Kk˙O=coe1Kl˙O
21 fvexd NFinRCRingMB0RV
22 eqid BaseP=BaseP
23 10 1 2 3 22 chpmatply1 NFinRCRingMBCMBaseP
24 11 23 eqeltrid NFinRCRingMBKBaseP
25 eqid coe1K=coe1K
26 eqid BaseR=BaseR
27 25 22 3 26 coe1fvalcl KBasePn0coe1KnBaseR
28 24 27 sylan NFinRCRingMBn0coe1KnBaseR
29 crngring RCRingRRing
30 29 3ad2ant2 NFinRCRingMBRRing
31 eqid 0R=0R
32 3 22 31 mptcoe1fsupp RRingKBasePfinSupp0Rn0coe1Kn
33 30 24 32 syl2anc NFinRCRingMBfinSupp0Rn0coe1Kn
34 21 28 33 mptnn0fsuppr NFinRCRingMBs0l0s<ll/ncoe1Kn=0R
35 csbfv l/ncoe1Kn=coe1Kl
36 35 a1i NFinRCRingMBl0l/ncoe1Kn=coe1Kl
37 36 eqeq1d NFinRCRingMBl0l/ncoe1Kn=0Rcoe1Kl=0R
38 37 biimpa NFinRCRingMBl0l/ncoe1Kn=0Rcoe1Kl=0R
39 1 matsca2 NFinRCRingR=ScalarA
40 39 3adant3 NFinRCRingMBR=ScalarA
41 40 ad2antrr NFinRCRingMBl0l/ncoe1Kn=0RR=ScalarA
42 41 fveq2d NFinRCRingMBl0l/ncoe1Kn=0R0R=0ScalarA
43 38 42 eqtrd NFinRCRingMBl0l/ncoe1Kn=0Rcoe1Kl=0ScalarA
44 43 oveq1d NFinRCRingMBl0l/ncoe1Kn=0Rcoe1Kl˙O=0ScalarA˙O
45 1 matlmod NFinRRingALMod
46 29 45 sylan2 NFinRCRingALMod
47 46 3adant3 NFinRCRingMBALMod
48 1 matring NFinRRingARing
49 29 48 sylan2 NFinRCRingARing
50 2 13 ringidcl ARingOB
51 49 50 syl NFinRCRingOB
52 51 3adant3 NFinRCRingMBOB
53 eqid ScalarA=ScalarA
54 eqid 0ScalarA=0ScalarA
55 eqid 0A=0A
56 2 53 14 54 55 lmod0vs ALModOB0ScalarA˙O=0A
57 47 52 56 syl2anc NFinRCRingMB0ScalarA˙O=0A
58 57 ad2antrr NFinRCRingMBl0l/ncoe1Kn=0R0ScalarA˙O=0A
59 44 58 eqtrd NFinRCRingMBl0l/ncoe1Kn=0Rcoe1Kl˙O=0A
60 59 ex NFinRCRingMBl0l/ncoe1Kn=0Rcoe1Kl˙O=0A
61 60 imim2d NFinRCRingMBl0s<ll/ncoe1Kn=0Rs<lcoe1Kl˙O=0A
62 61 ralimdva NFinRCRingMBl0s<ll/ncoe1Kn=0Rl0s<lcoe1Kl˙O=0A
63 62 reximdv NFinRCRingMBs0l0s<ll/ncoe1Kn=0Rs0l0s<lcoe1Kl˙O=0A
64 34 63 mpd NFinRCRingMBs0l0s<lcoe1Kl˙O=0A
65 17 18 20 64 mptnn0fsuppd NFinRCRingMBfinSupp0Ak0coe1Kk˙O
66 16 65 eqbrtrid NFinRCRingMBfinSupp0AG