Metamath Proof Explorer


Theorem cramerimplem2

Description: Lemma 2 for cramerimp : The matrix of a system of linear equations multiplied with the identity matrix with the ith column replaced by the solution vector of the system of linear equations equals the matrix of the system of linear equations with the ith column replaced by the right-hand side vector of the system of linear equations. (Contributed by AV, 19-Feb-2019) (Revised by AV, 1-Mar-2019)

Ref Expression
Hypotheses cramerimp.a A=NMatR
cramerimp.b B=BaseA
cramerimp.v V=BaseRN
cramerimp.e E=1ANmatRepVRZI
cramerimp.h H=XNmatRepVRYI
cramerimp.x ·˙=RmaVecMulNN
cramerimp.m ×˙=RmaMulNNN
Assertion cramerimplem2 RCRingINXBYVX·˙Z=YX×˙E=H

Proof

Step Hyp Ref Expression
1 cramerimp.a A=NMatR
2 cramerimp.b B=BaseA
3 cramerimp.v V=BaseRN
4 cramerimp.e E=1ANmatRepVRZI
5 cramerimp.h H=XNmatRepVRYI
6 cramerimp.x ·˙=RmaVecMulNN
7 cramerimp.m ×˙=RmaMulNNN
8 eqid BaseR=BaseR
9 eqid R=R
10 simpl RCRingINRCRing
11 10 3ad2ant1 RCRingINXBYVX·˙Z=YRCRing
12 1 2 matrcl XBNFinRV
13 12 simpld XBNFin
14 13 adantr XBYVNFin
15 14 3ad2ant2 RCRingINXBYVX·˙Z=YNFin
16 13 anim2i RCRingXBRCRingNFin
17 16 ancomd RCRingXBNFinRCRing
18 1 8 matbas2 NFinRCRingBaseRN×N=BaseA
19 17 18 syl RCRingXBBaseRN×N=BaseA
20 2 19 eqtr4id RCRingXBB=BaseRN×N
21 20 eleq2d RCRingXBXBXBaseRN×N
22 21 biimpd RCRingXBXBXBaseRN×N
23 22 ex RCRingXBXBXBaseRN×N
24 23 adantr RCRingINXBXBXBaseRN×N
25 24 com12 XBRCRingINXBXBaseRN×N
26 25 pm2.43a XBRCRingINXBaseRN×N
27 26 adantr XBYVRCRingINXBaseRN×N
28 27 impcom RCRingINXBYVXBaseRN×N
29 28 3adant3 RCRingINXBYVX·˙Z=YXBaseRN×N
30 crngring RCRingRRing
31 30 adantr RCRingINRRing
32 31 14 anim12i RCRingINXBYVRRingNFin
33 32 3adant3 RCRingINXBYVX·˙Z=YRRingNFin
34 ne0i INN
35 34 adantl RCRingINN
36 35 3ad2ant1 RCRingINXBYVX·˙Z=YN
37 15 15 36 3jca RCRingINXBYVX·˙Z=YNFinNFinN
38 3 eleq2i YVYBaseRN
39 38 biimpi YVYBaseRN
40 39 adantl XBYVYBaseRN
41 10 40 anim12i RCRingINXBYVRCRingYBaseRN
42 41 3adant3 RCRingINXBYVX·˙Z=YRCRingYBaseRN
43 simp3 RCRingINXBYVX·˙Z=YX·˙Z=Y
44 eqid BaseRN×N=BaseRN×N
45 eqid BaseRN=BaseRN
46 8 44 3 6 45 mavmulsolcl NFinNFinNRCRingYBaseRNX·˙Z=YZV
47 46 imp NFinNFinNRCRingYBaseRNX·˙Z=YZV
48 37 42 43 47 syl21anc RCRingINXBYVX·˙Z=YZV
49 simpr RCRingININ
50 49 3ad2ant1 RCRingINXBYVX·˙Z=YIN
51 eqid 1A=1A
52 1 2 3 51 ma1repvcl RRingNFinZVIN1ANmatRepVRZIB
53 4 52 eqeltrid RRingNFinZVINEB
54 33 48 50 53 syl12anc RCRingINXBYVX·˙Z=YEB
55 20 eqcomd RCRingXBBaseRN×N=B
56 55 ad2ant2r RCRingINXBYVBaseRN×N=B
57 56 3adant3 RCRingINXBYVX·˙Z=YBaseRN×N=B
58 54 57 eleqtrrd RCRingINXBYVX·˙Z=YEBaseRN×N
59 7 8 9 11 15 15 15 29 58 mamuval RCRingINXBYVX·˙Z=YX×˙E=iN,jNRlNiXlRlEj
60 31 3ad2ant1 RCRingINXBYVX·˙Z=YRRing
61 60 3ad2ant1 RCRingINXBYVX·˙Z=YiNjNRRing
62 simpl XBYVXB
63 62 3ad2ant2 RCRingINXBYVX·˙Z=YXB
64 63 48 50 3jca RCRingINXBYVX·˙Z=YXBZVIN
65 64 3ad2ant1 RCRingINXBYVX·˙Z=YiNjNXBZVIN
66 simp2 RCRingINXBYVX·˙Z=YiNjNiN
67 simp3 RCRingINXBYVX·˙Z=YiNjNjN
68 43 3ad2ant1 RCRingINXBYVX·˙Z=YiNjNX·˙Z=Y
69 eqid 0R=0R
70 1 2 3 51 69 4 6 mulmarep1gsum2 RRingXBZVINiNjNX·˙Z=YRlNiXlRlEj=ifj=IYiiXj
71 61 65 66 67 68 70 syl113anc RCRingINXBYVX·˙Z=YiNjNRlNiXlRlEj=ifj=IYiiXj
72 71 mpoeq3dva RCRingINXBYVX·˙Z=YiN,jNRlNiXlRlEj=iN,jNifj=IYiiXj
73 simpr XBYVYV
74 73 3ad2ant2 RCRingINXBYVX·˙Z=YYV
75 eqid NmatRepVR=NmatRepVR
76 1 2 75 3 marepvval XBYVINXNmatRepVRYI=iN,jNifj=IYiiXj
77 63 74 50 76 syl3anc RCRingINXBYVX·˙Z=YXNmatRepVRYI=iN,jNifj=IYiiXj
78 5 77 eqtr2id RCRingINXBYVX·˙Z=YiN,jNifj=IYiiXj=H
79 59 72 78 3eqtrd RCRingINXBYVX·˙Z=YX×˙E=H