Metamath Proof Explorer


Theorem crctcsh

Description: Cyclically shifting the indices of a circuit <. F , P >. results in a circuit <. H , Q >. . (Contributed by AV, 10-Mar-2021) (Proof shortened by AV, 31-Oct-2021)

Ref Expression
Hypotheses crctcsh.v V=VtxG
crctcsh.i I=iEdgG
crctcsh.d φFCircuitsGP
crctcsh.n N=F
crctcsh.s φS0..^N
crctcsh.h H=FcyclShiftS
crctcsh.q Q=x0NifxNSPx+SPx+S-N
Assertion crctcsh φHCircuitsGQ

Proof

Step Hyp Ref Expression
1 crctcsh.v V=VtxG
2 crctcsh.i I=iEdgG
3 crctcsh.d φFCircuitsGP
4 crctcsh.n N=F
5 crctcsh.s φS0..^N
6 crctcsh.h H=FcyclShiftS
7 crctcsh.q Q=x0NifxNSPx+SPx+S-N
8 1 2 3 4 5 6 7 crctcshlem4 φS=0H=FQ=P
9 breq12 H=FQ=PHCircuitsGQFCircuitsGP
10 3 9 syl5ibrcom φH=FQ=PHCircuitsGQ
11 10 adantr φS=0H=FQ=PHCircuitsGQ
12 8 11 mpd φS=0HCircuitsGQ
13 1 2 3 4 5 6 7 crctcshtrl φHTrailsGQ
14 13 adantr φS0HTrailsGQ
15 breq1 x=0xNS0NS
16 oveq1 x=0x+S=0+S
17 16 fveq2d x=0Px+S=P0+S
18 16 fvoveq1d x=0Px+S-N=P0+S-N
19 15 17 18 ifbieq12d x=0ifxNSPx+SPx+S-N=if0NSP0+SP0+S-N
20 elfzo0le S0..^NSN
21 5 20 syl φSN
22 1 2 3 4 crctcshlem1 φN0
23 22 nn0red φN
24 elfzoelz S0..^NS
25 5 24 syl φS
26 25 zred φS
27 23 26 subge0d φ0NSSN
28 21 27 mpbird φ0NS
29 28 adantr φS00NS
30 29 iftrued φS0if0NSP0+SP0+S-N=P0+S
31 19 30 sylan9eqr φS0x=0ifxNSPx+SPx+S-N=P0+S
32 3 adantr φS0FCircuitsGP
33 1 2 32 4 crctcshlem1 φS0N0
34 0elfz N000N
35 33 34 syl φS000N
36 fvexd φS0P0+SV
37 7 31 35 36 fvmptd2 φS0Q0=P0+S
38 breq1 x=HxNSHNS
39 oveq1 x=Hx+S=H+S
40 39 fveq2d x=HPx+S=PH+S
41 39 fvoveq1d x=HPx+S-N=PH+S-N
42 38 40 41 ifbieq12d x=HifxNSPx+SPx+S-N=ifHNSPH+SPH+S-N
43 elfzoel2 S0..^NN
44 elfzonn0 S0..^NS0
45 simpr NS0S0
46 45 anim1i NS0S0S0S0
47 elnnne0 SS0S0
48 46 47 sylibr NS0S0S
49 48 nngt0d NS0S00<S
50 zre NN
51 nn0re S0S
52 50 51 anim12ci NS0SN
53 52 adantr NS0S0SN
54 ltsubpos SN0<SNS<N
55 54 bicomd SNNS<N0<S
56 53 55 syl NS0S0NS<N0<S
57 49 56 mpbird NS0S0NS<N
58 57 ex NS0S0NS<N
59 43 44 58 syl2anc S0..^NS0NS<N
60 5 59 syl φS0NS<N
61 60 imp φS0NS<N
62 5 adantr φS0S0..^N
63 1 2 32 4 62 6 crctcshlem2 φS0H=N
64 63 breq1d φS0HNSNNS
65 64 notbid φS0¬HNS¬NNS
66 23 26 resubcld φNS
67 66 23 jca φNSN
68 67 adantr φS0NSN
69 ltnle NSNNS<N¬NNS
70 68 69 syl φS0NS<N¬NNS
71 65 70 bitr4d φS0¬HNSNS<N
72 61 71 mpbird φS0¬HNS
73 72 iffalsed φS0ifHNSPH+SPH+S-N=PH+S-N
74 42 73 sylan9eqr φS0x=HifxNSPx+SPx+S-N=PH+S-N
75 1 2 3 4 5 6 crctcshlem2 φH=N
76 75 22 eqeltrd φH0
77 76 nn0cnd φH
78 25 zcnd φS
79 22 nn0cnd φN
80 77 78 79 addsubd φH+S-N=H-N+S
81 75 oveq1d φHN=NN
82 79 subidd φNN=0
83 81 82 eqtrd φHN=0
84 83 oveq1d φH-N+S=0+S
85 80 84 eqtrd φH+S-N=0+S
86 85 fveq2d φPH+S-N=P0+S
87 86 adantr φS0PH+S-N=P0+S
88 87 adantr φS0x=HPH+S-N=P0+S
89 74 88 eqtrd φS0x=HifxNSPx+SPx+S-N=P0+S
90 75 adantr φS0H=N
91 nn0fz0 N0N0N
92 22 91 sylib φN0N
93 92 adantr φS0N0N
94 90 93 eqeltrd φS0H0N
95 7 89 94 36 fvmptd2 φS0QH=P0+S
96 37 95 eqtr4d φS0Q0=QH
97 iscrct HCircuitsGQHTrailsGQQ0=QH
98 14 96 97 sylanbrc φS0HCircuitsGQ
99 12 98 pm2.61dane φHCircuitsGQ