Metamath Proof Explorer


Theorem cycpmco2lem2

Description: Lemma for cycpmco2 . (Contributed by Thierry Arnoux, 4-Jan-2024)

Ref Expression
Hypotheses cycpmco2.c M=toCycD
cycpmco2.s S=SymGrpD
cycpmco2.d φDV
cycpmco2.w φWdomM
cycpmco2.i φIDranW
cycpmco2.j φJranW
cycpmco2.e E=W-1J+1
cycpmco2.1 U=WspliceEE⟨“I”⟩
Assertion cycpmco2lem2 φUE=I

Proof

Step Hyp Ref Expression
1 cycpmco2.c M=toCycD
2 cycpmco2.s S=SymGrpD
3 cycpmco2.d φDV
4 cycpmco2.w φWdomM
5 cycpmco2.i φIDranW
6 cycpmco2.j φJranW
7 cycpmco2.e E=W-1J+1
8 cycpmco2.1 U=WspliceEE⟨“I”⟩
9 ovexd φW-1J+1V
10 7 9 eqeltrid φEV
11 5 eldifad φID
12 11 s1cld φ⟨“I”⟩WordD
13 splval WdomMEVEV⟨“I”⟩WordDWspliceEE⟨“I”⟩=WprefixE++⟨“I”⟩++WsubstrEW
14 4 10 10 12 13 syl13anc φWspliceEE⟨“I”⟩=WprefixE++⟨“I”⟩++WsubstrEW
15 8 14 eqtrid φU=WprefixE++⟨“I”⟩++WsubstrEW
16 15 fveq1d φUE=WprefixE++⟨“I”⟩++WsubstrEWE
17 ssrab2 wWordD|w:domw1-1DWordD
18 eqid BaseS=BaseS
19 1 2 18 tocycf DVM:wWordD|w:domw1-1DBaseS
20 3 19 syl φM:wWordD|w:domw1-1DBaseS
21 20 fdmd φdomM=wWordD|w:domw1-1D
22 4 21 eleqtrd φWwWordD|w:domw1-1D
23 17 22 sselid φWWordD
24 pfxcl WWordDWprefixEWordD
25 23 24 syl φWprefixEWordD
26 ccatcl WprefixEWordD⟨“I”⟩WordDWprefixE++⟨“I”⟩WordD
27 25 12 26 syl2anc φWprefixE++⟨“I”⟩WordD
28 swrdcl WWordDWsubstrEWWordD
29 23 28 syl φWsubstrEWWordD
30 fz0ssnn0 0W0
31 id w=Ww=W
32 dmeq w=Wdomw=domW
33 eqidd w=WD=D
34 31 32 33 f1eq123d w=Ww:domw1-1DW:domW1-1D
35 34 elrab WwWordD|w:domw1-1DWWordDW:domW1-1D
36 22 35 sylib φWWordDW:domW1-1D
37 36 simprd φW:domW1-1D
38 f1cnv W:domW1-1DW-1:ranW1-1 ontodomW
39 f1of W-1:ranW1-1 ontodomWW-1:ranWdomW
40 37 38 39 3syl φW-1:ranWdomW
41 40 6 ffvelcdmd φW-1JdomW
42 wrddm WWordDdomW=0..^W
43 23 42 syl φdomW=0..^W
44 41 43 eleqtrd φW-1J0..^W
45 fzofzp1 W-1J0..^WW-1J+10W
46 44 45 syl φW-1J+10W
47 7 46 eqeltrid φE0W
48 30 47 sselid φE0
49 fzonn0p1 E0E0..^E+1
50 48 49 syl φE0..^E+1
51 ccatws1len WprefixEWordDWprefixE++⟨“I”⟩=WprefixE+1
52 23 24 51 3syl φWprefixE++⟨“I”⟩=WprefixE+1
53 pfxlen WWordDE0WWprefixE=E
54 23 47 53 syl2anc φWprefixE=E
55 54 oveq1d φWprefixE+1=E+1
56 52 55 eqtrd φWprefixE++⟨“I”⟩=E+1
57 56 oveq2d φ0..^WprefixE++⟨“I”⟩=0..^E+1
58 50 57 eleqtrrd φE0..^WprefixE++⟨“I”⟩
59 ccatval1 WprefixE++⟨“I”⟩WordDWsubstrEWWordDE0..^WprefixE++⟨“I”⟩WprefixE++⟨“I”⟩++WsubstrEWE=WprefixE++⟨“I”⟩E
60 27 29 58 59 syl3anc φWprefixE++⟨“I”⟩++WsubstrEWE=WprefixE++⟨“I”⟩E
61 48 nn0zd φE
62 elfzomin EEE..^E+1
63 61 62 syl φEE..^E+1
64 s1len ⟨“I”⟩=1
65 64 a1i φ⟨“I”⟩=1
66 54 65 oveq12d φWprefixE+⟨“I”⟩=E+1
67 54 66 oveq12d φWprefixE..^WprefixE+⟨“I”⟩=E..^E+1
68 63 67 eleqtrrd φEWprefixE..^WprefixE+⟨“I”⟩
69 ccatval2 WprefixEWordD⟨“I”⟩WordDEWprefixE..^WprefixE+⟨“I”⟩WprefixE++⟨“I”⟩E=⟨“I”⟩EWprefixE
70 25 12 68 69 syl3anc φWprefixE++⟨“I”⟩E=⟨“I”⟩EWprefixE
71 16 60 70 3eqtrd φUE=⟨“I”⟩EWprefixE
72 54 oveq2d φEWprefixE=EE
73 48 nn0cnd φE
74 73 subidd φEE=0
75 72 74 eqtrd φEWprefixE=0
76 75 fveq2d φ⟨“I”⟩EWprefixE=⟨“I”⟩0
77 s1fv IDranW⟨“I”⟩0=I
78 5 77 syl φ⟨“I”⟩0=I
79 71 76 78 3eqtrd φUE=I