| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cycpmco2.c |
|
| 2 |
|
cycpmco2.s |
|
| 3 |
|
cycpmco2.d |
|
| 4 |
|
cycpmco2.w |
|
| 5 |
|
cycpmco2.i |
|
| 6 |
|
cycpmco2.j |
|
| 7 |
|
cycpmco2.e |
|
| 8 |
|
cycpmco2.1 |
|
| 9 |
|
ovexd |
|
| 10 |
7 9
|
eqeltrid |
|
| 11 |
5
|
eldifad |
|
| 12 |
11
|
s1cld |
|
| 13 |
|
splval |
|
| 14 |
4 10 10 12 13
|
syl13anc |
|
| 15 |
8 14
|
eqtrid |
|
| 16 |
15
|
fveq1d |
|
| 17 |
|
ssrab2 |
|
| 18 |
|
eqid |
|
| 19 |
1 2 18
|
tocycf |
|
| 20 |
3 19
|
syl |
|
| 21 |
20
|
fdmd |
|
| 22 |
4 21
|
eleqtrd |
|
| 23 |
17 22
|
sselid |
|
| 24 |
|
pfxcl |
|
| 25 |
23 24
|
syl |
|
| 26 |
|
ccatcl |
|
| 27 |
25 12 26
|
syl2anc |
|
| 28 |
|
swrdcl |
|
| 29 |
23 28
|
syl |
|
| 30 |
|
fz0ssnn0 |
|
| 31 |
|
id |
|
| 32 |
|
dmeq |
|
| 33 |
|
eqidd |
|
| 34 |
31 32 33
|
f1eq123d |
|
| 35 |
34
|
elrab |
|
| 36 |
22 35
|
sylib |
|
| 37 |
36
|
simprd |
|
| 38 |
|
f1cnv |
|
| 39 |
|
f1of |
|
| 40 |
37 38 39
|
3syl |
|
| 41 |
40 6
|
ffvelcdmd |
|
| 42 |
|
wrddm |
|
| 43 |
23 42
|
syl |
|
| 44 |
41 43
|
eleqtrd |
|
| 45 |
|
fzofzp1 |
|
| 46 |
44 45
|
syl |
|
| 47 |
7 46
|
eqeltrid |
|
| 48 |
30 47
|
sselid |
|
| 49 |
|
fzonn0p1 |
|
| 50 |
48 49
|
syl |
|
| 51 |
|
ccatws1len |
|
| 52 |
23 24 51
|
3syl |
|
| 53 |
|
pfxlen |
|
| 54 |
23 47 53
|
syl2anc |
|
| 55 |
54
|
oveq1d |
|
| 56 |
52 55
|
eqtrd |
|
| 57 |
56
|
oveq2d |
|
| 58 |
50 57
|
eleqtrrd |
|
| 59 |
|
ccatval1 |
|
| 60 |
27 29 58 59
|
syl3anc |
|
| 61 |
48
|
nn0zd |
|
| 62 |
|
elfzomin |
|
| 63 |
61 62
|
syl |
|
| 64 |
|
s1len |
|
| 65 |
64
|
a1i |
|
| 66 |
54 65
|
oveq12d |
|
| 67 |
54 66
|
oveq12d |
|
| 68 |
63 67
|
eleqtrrd |
|
| 69 |
|
ccatval2 |
|
| 70 |
25 12 68 69
|
syl3anc |
|
| 71 |
16 60 70
|
3eqtrd |
|
| 72 |
54
|
oveq2d |
|
| 73 |
48
|
nn0cnd |
|
| 74 |
73
|
subidd |
|
| 75 |
72 74
|
eqtrd |
|
| 76 |
75
|
fveq2d |
|
| 77 |
|
s1fv |
|
| 78 |
5 77
|
syl |
|
| 79 |
71 76 78
|
3eqtrd |
|