| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dchrmhm.g |
|
| 2 |
|
dchrmhm.z |
|
| 3 |
|
dchrmhm.b |
|
| 4 |
|
dchrn0.b |
|
| 5 |
|
dchrn0.u |
|
| 6 |
|
dchr1cl.o |
|
| 7 |
|
dchrmullid.t |
|
| 8 |
|
dchrmullid.x |
|
| 9 |
|
dchrinvcl.n |
|
| 10 |
1 3
|
dchrrcl |
|
| 11 |
8 10
|
syl |
|
| 12 |
|
fveq2 |
|
| 13 |
12
|
oveq2d |
|
| 14 |
|
fveq2 |
|
| 15 |
14
|
oveq2d |
|
| 16 |
|
fveq2 |
|
| 17 |
16
|
oveq2d |
|
| 18 |
|
fveq2 |
|
| 19 |
18
|
oveq2d |
|
| 20 |
1 2 3 4 8
|
dchrf |
|
| 21 |
4 5
|
unitss |
|
| 22 |
21
|
sseli |
|
| 23 |
|
ffvelcdm |
|
| 24 |
20 22 23
|
syl2an |
|
| 25 |
|
simpr |
|
| 26 |
8
|
adantr |
|
| 27 |
22
|
adantl |
|
| 28 |
1 2 3 4 5 26 27
|
dchrn0 |
|
| 29 |
25 28
|
mpbird |
|
| 30 |
24 29
|
reccld |
|
| 31 |
|
1t1e1 |
|
| 32 |
31
|
eqcomi |
|
| 33 |
32
|
a1i |
|
| 34 |
1 2 3
|
dchrmhm |
|
| 35 |
8
|
adantr |
|
| 36 |
34 35
|
sselid |
|
| 37 |
|
simprl |
|
| 38 |
21 37
|
sselid |
|
| 39 |
|
simprr |
|
| 40 |
21 39
|
sselid |
|
| 41 |
|
eqid |
|
| 42 |
41 4
|
mgpbas |
|
| 43 |
|
eqid |
|
| 44 |
41 43
|
mgpplusg |
|
| 45 |
|
eqid |
|
| 46 |
|
cnfldmul |
|
| 47 |
45 46
|
mgpplusg |
|
| 48 |
42 44 47
|
mhmlin |
|
| 49 |
36 38 40 48
|
syl3anc |
|
| 50 |
33 49
|
oveq12d |
|
| 51 |
|
1cnd |
|
| 52 |
20
|
adantr |
|
| 53 |
52 38
|
ffvelcdmd |
|
| 54 |
52 40
|
ffvelcdmd |
|
| 55 |
1 2 3 4 5 35 38
|
dchrn0 |
|
| 56 |
37 55
|
mpbird |
|
| 57 |
1 2 3 4 5 35 40
|
dchrn0 |
|
| 58 |
39 57
|
mpbird |
|
| 59 |
51 53 51 54 56 58
|
divmuldivd |
|
| 60 |
50 59
|
eqtr4d |
|
| 61 |
34 8
|
sselid |
|
| 62 |
|
eqid |
|
| 63 |
41 62
|
ringidval |
|
| 64 |
|
cnfld1 |
|
| 65 |
45 64
|
ringidval |
|
| 66 |
63 65
|
mhm0 |
|
| 67 |
61 66
|
syl |
|
| 68 |
67
|
oveq2d |
|
| 69 |
|
1div1e1 |
|
| 70 |
68 69
|
eqtrdi |
|
| 71 |
1 2 4 5 11 3 13 15 17 19 30 60 70
|
dchrelbasd |
|
| 72 |
9 71
|
eqeltrid |
|
| 73 |
1 2 3 7 72 8
|
dchrmul |
|
| 74 |
4
|
fvexi |
|
| 75 |
74
|
a1i |
|
| 76 |
|
ovex |
|
| 77 |
|
c0ex |
|
| 78 |
76 77
|
ifex |
|
| 79 |
78
|
a1i |
|
| 80 |
20
|
ffvelcdmda |
|
| 81 |
9
|
a1i |
|
| 82 |
20
|
feqmptd |
|
| 83 |
75 79 80 81 82
|
offval2 |
|
| 84 |
|
ovif |
|
| 85 |
80
|
adantr |
|
| 86 |
8
|
adantr |
|
| 87 |
|
simpr |
|
| 88 |
1 2 3 4 5 86 87
|
dchrn0 |
|
| 89 |
88
|
biimpar |
|
| 90 |
85 89
|
recid2d |
|
| 91 |
90
|
ifeq1da |
|
| 92 |
80
|
mul02d |
|
| 93 |
92
|
ifeq2d |
|
| 94 |
91 93
|
eqtrd |
|
| 95 |
84 94
|
eqtrid |
|
| 96 |
95
|
mpteq2dva |
|
| 97 |
6 96
|
eqtr4id |
|
| 98 |
83 97
|
eqtr4d |
|
| 99 |
73 98
|
eqtrd |
|
| 100 |
72 99
|
jca |
|