Metamath Proof Explorer


Theorem dfac9

Description: Equivalence of the axiom of choice with a statement related to ac9 ; definition AC3 of Schechter p. 139. (Contributed by Stefan O'Rear, 22-Feb-2015)

Ref Expression
Assertion dfac9 CHOICEfFunfranfxdomffx

Proof

Step Hyp Ref Expression
1 dfac3 CHOICEsgtstgtt
2 vex fV
3 2 rnex ranfV
4 raleq s=ranftstgtttranftgtt
5 4 exbidv s=ranfgtstgttgtranftgtt
6 3 5 spcv sgtstgttgtranftgtt
7 df-nel ranf¬ranf
8 7 biimpi ranf¬ranf
9 8 ad2antlr Funfranfxdomf¬ranf
10 fvelrn Funfxdomffxranf
11 10 adantlr Funfranfxdomffxranf
12 eleq1 fx=fxranfranf
13 11 12 syl5ibcom Funfranfxdomffx=ranf
14 13 necon3bd Funfranfxdomf¬ranffx
15 9 14 mpd Funfranfxdomffx
16 15 adantlr Funfranftranftgttxdomffx
17 neeq1 t=fxtfx
18 fveq2 t=fxgt=gfx
19 id t=fxt=fx
20 18 19 eleq12d t=fxgttgfxfx
21 17 20 imbi12d t=fxtgttfxgfxfx
22 simplr Funfranftranftgttxdomftranftgtt
23 10 ad4ant14 Funfranftranftgttxdomffxranf
24 21 22 23 rspcdva Funfranftranftgttxdomffxgfxfx
25 16 24 mpd Funfranftranftgttxdomfgfxfx
26 25 ralrimiva Funfranftranftgttxdomfgfxfx
27 2 dmex domfV
28 mptelixpg domfVxdomfgfxxdomffxxdomfgfxfx
29 27 28 ax-mp xdomfgfxxdomffxxdomfgfxfx
30 26 29 sylibr Funfranftranftgttxdomfgfxxdomffx
31 30 ne0d Funfranftranftgttxdomffx
32 31 ex Funfranftranftgttxdomffx
33 32 exlimdv Funfranfgtranftgttxdomffx
34 6 33 syl5com sgtstgttFunfranfxdomffx
35 34 alrimiv sgtstgttfFunfranfxdomffx
36 fnresi IsFns
37 fnfun IsFnsFunIs
38 36 37 ax-mp FunIs
39 neldifsn ¬s
40 vex sV
41 40 difexi sV
42 resiexg sVIsV
43 41 42 ax-mp IsV
44 funeq f=IsFunfFunIs
45 rneq f=Isranf=ranIs
46 rnresi ranIs=s
47 45 46 eqtrdi f=Isranf=s
48 47 eleq2d f=Isranfs
49 48 notbid f=Is¬ranf¬s
50 7 49 bitrid f=Isranf¬s
51 44 50 anbi12d f=IsFunfranfFunIs¬s
52 dmeq f=Isdomf=domIs
53 dmresi domIs=s
54 52 53 eqtrdi f=Isdomf=s
55 54 ixpeq1d f=Isxdomffx=xsfx
56 fveq1 f=Isfx=Isx
57 fvresi xsIsx=x
58 56 57 sylan9eq f=Isxsfx=x
59 58 ixpeq2dva f=Isxsfx=xsx
60 55 59 eqtrd f=Isxdomffx=xsx
61 60 neeq1d f=Isxdomffxxsx
62 51 61 imbi12d f=IsFunfranfxdomffxFunIs¬sxsx
63 43 62 spcv fFunfranfxdomffxFunIs¬sxsx
64 38 39 63 mp2ani fFunfranfxdomffxxsx
65 n0 xsxggxsx
66 vex gV
67 66 elixp gxsxgFnsxsgxx
68 eldifsn xsxsx
69 68 imbi1i xsgxxxsxgxx
70 impexp xsxgxxxsxgxx
71 69 70 bitri xsgxxxsxgxx
72 71 ralbii2 xsgxxxsxgxx
73 neeq1 x=txt
74 fveq2 x=tgx=gt
75 id x=tx=t
76 74 75 eleq12d x=tgxxgtt
77 73 76 imbi12d x=txgxxtgtt
78 77 cbvralvw xsxgxxtstgtt
79 72 78 bitri xsgxxtstgtt
80 79 biimpi xsgxxtstgtt
81 67 80 simplbiim gxsxtstgtt
82 81 eximi ggxsxgtstgtt
83 65 82 sylbi xsxgtstgtt
84 64 83 syl fFunfranfxdomffxgtstgtt
85 84 alrimiv fFunfranfxdomffxsgtstgtt
86 35 85 impbii sgtstgttfFunfranfxdomffx
87 1 86 bitri CHOICEfFunfranfxdomffx