Step |
Hyp |
Ref |
Expression |
1 |
|
dfac3 |
|
2 |
|
vex |
|
3 |
2
|
rnex |
|
4 |
|
raleq |
|
5 |
4
|
exbidv |
|
6 |
3 5
|
spcv |
|
7 |
|
df-nel |
|
8 |
7
|
biimpi |
|
9 |
8
|
ad2antlr |
|
10 |
|
fvelrn |
|
11 |
10
|
adantlr |
|
12 |
|
eleq1 |
|
13 |
11 12
|
syl5ibcom |
|
14 |
13
|
necon3bd |
|
15 |
9 14
|
mpd |
|
16 |
15
|
adantlr |
|
17 |
|
neeq1 |
|
18 |
|
fveq2 |
|
19 |
|
id |
|
20 |
18 19
|
eleq12d |
|
21 |
17 20
|
imbi12d |
|
22 |
|
simplr |
|
23 |
10
|
ad4ant14 |
|
24 |
21 22 23
|
rspcdva |
|
25 |
16 24
|
mpd |
|
26 |
25
|
ralrimiva |
|
27 |
2
|
dmex |
|
28 |
|
mptelixpg |
|
29 |
27 28
|
ax-mp |
|
30 |
26 29
|
sylibr |
|
31 |
30
|
ne0d |
|
32 |
31
|
ex |
|
33 |
32
|
exlimdv |
|
34 |
6 33
|
syl5com |
|
35 |
34
|
alrimiv |
|
36 |
|
fnresi |
|
37 |
|
fnfun |
|
38 |
36 37
|
ax-mp |
|
39 |
|
neldifsn |
|
40 |
|
vex |
|
41 |
40
|
difexi |
|
42 |
|
resiexg |
|
43 |
41 42
|
ax-mp |
|
44 |
|
funeq |
|
45 |
|
rneq |
|
46 |
|
rnresi |
|
47 |
45 46
|
eqtrdi |
|
48 |
47
|
eleq2d |
|
49 |
48
|
notbid |
|
50 |
7 49
|
bitrid |
|
51 |
44 50
|
anbi12d |
|
52 |
|
dmeq |
|
53 |
|
dmresi |
|
54 |
52 53
|
eqtrdi |
|
55 |
54
|
ixpeq1d |
|
56 |
|
fveq1 |
|
57 |
|
fvresi |
|
58 |
56 57
|
sylan9eq |
|
59 |
58
|
ixpeq2dva |
|
60 |
55 59
|
eqtrd |
|
61 |
60
|
neeq1d |
|
62 |
51 61
|
imbi12d |
|
63 |
43 62
|
spcv |
|
64 |
38 39 63
|
mp2ani |
|
65 |
|
n0 |
|
66 |
|
vex |
|
67 |
66
|
elixp |
|
68 |
|
eldifsn |
|
69 |
68
|
imbi1i |
|
70 |
|
impexp |
|
71 |
69 70
|
bitri |
|
72 |
71
|
ralbii2 |
|
73 |
|
neeq1 |
|
74 |
|
fveq2 |
|
75 |
|
id |
|
76 |
74 75
|
eleq12d |
|
77 |
73 76
|
imbi12d |
|
78 |
77
|
cbvralvw |
|
79 |
72 78
|
bitri |
|
80 |
79
|
biimpi |
|
81 |
67 80
|
simplbiim |
|
82 |
81
|
eximi |
|
83 |
65 82
|
sylbi |
|
84 |
64 83
|
syl |
|
85 |
84
|
alrimiv |
|
86 |
35 85
|
impbii |
|
87 |
1 86
|
bitri |
|