Metamath Proof Explorer


Theorem dfphi2

Description: Alternate definition of the Euler phi function. (Contributed by Mario Carneiro, 23-Feb-2014) (Revised by Mario Carneiro, 2-May-2016)

Ref Expression
Assertion dfphi2 NϕN=x0..^N|xgcdN=1

Proof

Step Hyp Ref Expression
1 elnn1uz2 NN=1N2
2 phi1 ϕ1=1
3 0z 0
4 hashsng 00=1
5 3 4 ax-mp 0=1
6 rabid2 0=x0|xgcd1=1x0xgcd1=1
7 elsni x0x=0
8 7 oveq1d x0xgcd1=0gcd1
9 gcd1 00gcd1=1
10 3 9 ax-mp 0gcd1=1
11 8 10 eqtrdi x0xgcd1=1
12 6 11 mprgbir 0=x0|xgcd1=1
13 12 fveq2i 0=x0|xgcd1=1
14 2 5 13 3eqtr2i ϕ1=x0|xgcd1=1
15 fveq2 N=1ϕN=ϕ1
16 oveq2 N=10..^N=0..^1
17 fzo01 0..^1=0
18 16 17 eqtrdi N=10..^N=0
19 oveq2 N=1xgcdN=xgcd1
20 19 eqeq1d N=1xgcdN=1xgcd1=1
21 18 20 rabeqbidv N=1x0..^N|xgcdN=1=x0|xgcd1=1
22 21 fveq2d N=1x0..^N|xgcdN=1=x0|xgcd1=1
23 14 15 22 3eqtr4a N=1ϕN=x0..^N|xgcdN=1
24 eluz2nn N2N
25 phival NϕN=x1N|xgcdN=1
26 24 25 syl N2ϕN=x1N|xgcdN=1
27 fzossfz 1..^N1N
28 27 a1i N21..^N1N
29 sseqin2 1..^N1N1N1..^N=1..^N
30 28 29 sylib N21N1..^N=1..^N
31 fzo0ss1 1..^N0..^N
32 sseqin2 1..^N0..^N0..^N1..^N=1..^N
33 31 32 mpbi 0..^N1..^N=1..^N
34 30 33 eqtr4di N21N1..^N=0..^N1..^N
35 34 rabeqdv N2x1N1..^N|xgcdN=1=x0..^N1..^N|xgcdN=1
36 inrab2 x1N|xgcdN=11..^N=x1N1..^N|xgcdN=1
37 inrab2 x0..^N|xgcdN=11..^N=x0..^N1..^N|xgcdN=1
38 35 36 37 3eqtr4g N2x1N|xgcdN=11..^N=x0..^N|xgcdN=11..^N
39 phibndlem N2x1N|xgcdN=11N1
40 eluzelz N2N
41 fzoval N1..^N=1N1
42 40 41 syl N21..^N=1N1
43 39 42 sseqtrrd N2x1N|xgcdN=11..^N
44 df-ss x1N|xgcdN=11..^Nx1N|xgcdN=11..^N=x1N|xgcdN=1
45 43 44 sylib N2x1N|xgcdN=11..^N=x1N|xgcdN=1
46 gcd0id N0gcdN=N
47 40 46 syl N20gcdN=N
48 eluzelre N2N
49 eluzge2nn0 N2N0
50 49 nn0ge0d N20N
51 48 50 absidd N2N=N
52 47 51 eqtrd N20gcdN=N
53 eluz2b3 N2NN1
54 53 simprbi N2N1
55 52 54 eqnetrd N20gcdN1
56 55 adantr N2x0..^N0gcdN1
57 7 oveq1d x0xgcdN=0gcdN
58 57 17 eleq2s x0..^1xgcdN=0gcdN
59 58 neeq1d x0..^1xgcdN10gcdN1
60 56 59 syl5ibrcom N2x0..^Nx0..^1xgcdN1
61 60 necon2bd N2x0..^NxgcdN=1¬x0..^1
62 simpr N2x0..^Nx0..^N
63 1z 1
64 fzospliti x0..^N1x0..^1x1..^N
65 62 63 64 sylancl N2x0..^Nx0..^1x1..^N
66 65 ord N2x0..^N¬x0..^1x1..^N
67 61 66 syld N2x0..^NxgcdN=1x1..^N
68 67 ralrimiva N2x0..^NxgcdN=1x1..^N
69 rabss x0..^N|xgcdN=11..^Nx0..^NxgcdN=1x1..^N
70 68 69 sylibr N2x0..^N|xgcdN=11..^N
71 df-ss x0..^N|xgcdN=11..^Nx0..^N|xgcdN=11..^N=x0..^N|xgcdN=1
72 70 71 sylib N2x0..^N|xgcdN=11..^N=x0..^N|xgcdN=1
73 38 45 72 3eqtr3d N2x1N|xgcdN=1=x0..^N|xgcdN=1
74 73 fveq2d N2x1N|xgcdN=1=x0..^N|xgcdN=1
75 26 74 eqtrd N2ϕN=x0..^N|xgcdN=1
76 23 75 jaoi N=1N2ϕN=x0..^N|xgcdN=1
77 1 76 sylbi NϕN=x0..^N|xgcdN=1