Metamath Proof Explorer


Theorem dfpth2

Description: Alternate definition for a pair of classes/functions to be a path (in an undirected graph). (Contributed by AV, 4-Oct-2025)

Ref Expression
Assertion dfpth2 F Paths G P F Trails G P Fun P 1 F -1 P 0 P 1 ..^ F

Proof

Step Hyp Ref Expression
1 ispth F Paths G P F Trails G P Fun P 1 ..^ F -1 P 0 F P 1 ..^ F =
2 istrl F Trails G P F Walks G P Fun F -1
3 wlkcl F Walks G P F 0
4 eqid Vtx G = Vtx G
5 4 wlkp F Walks G P P : 0 F Vtx G
6 ffn P : 0 F Vtx G P Fn 0 F
7 6 adantl F 0 P : 0 F Vtx G P Fn 0 F
8 0elfz F 0 0 0 F
9 8 adantr F 0 P : 0 F Vtx G 0 0 F
10 nn0fz0 F 0 F 0 F
11 10 biimpi F 0 F 0 F
12 11 adantr F 0 P : 0 F Vtx G F 0 F
13 7 9 12 3jca F 0 P : 0 F Vtx G P Fn 0 F 0 0 F F 0 F
14 3 5 13 syl2anc F Walks G P P Fn 0 F 0 0 F F 0 F
15 14 adantr F Walks G P Fun F -1 P Fn 0 F 0 0 F F 0 F
16 2 15 sylbi F Trails G P P Fn 0 F 0 0 F F 0 F
17 fnimapr P Fn 0 F 0 0 F F 0 F P 0 F = P 0 P F
18 16 17 syl F Trails G P P 0 F = P 0 P F
19 18 ineq1d F Trails G P P 0 F P 1 ..^ F = P 0 P F P 1 ..^ F
20 19 eqeq1d F Trails G P P 0 F P 1 ..^ F = P 0 P F P 1 ..^ F =
21 disj P 0 P F P 1 ..^ F = x P 0 P F ¬ x P 1 ..^ F
22 fvex P 0 V
23 fvex P F V
24 eleq1 x = P 0 x P 1 ..^ F P 0 P 1 ..^ F
25 24 notbid x = P 0 ¬ x P 1 ..^ F ¬ P 0 P 1 ..^ F
26 eleq1 x = P F x P 1 ..^ F P F P 1 ..^ F
27 26 notbid x = P F ¬ x P 1 ..^ F ¬ P F P 1 ..^ F
28 22 23 25 27 ralpr x P 0 P F ¬ x P 1 ..^ F ¬ P 0 P 1 ..^ F ¬ P F P 1 ..^ F
29 df-nel P 0 P 1 ..^ F ¬ P 0 P 1 ..^ F
30 29 bicomi ¬ P 0 P 1 ..^ F P 0 P 1 ..^ F
31 28 30 bianbi x P 0 P F ¬ x P 1 ..^ F P 0 P 1 ..^ F ¬ P F P 1 ..^ F
32 21 31 bitri P 0 P F P 1 ..^ F = P 0 P 1 ..^ F ¬ P F P 1 ..^ F
33 20 32 bitrdi F Trails G P P 0 F P 1 ..^ F = P 0 P 1 ..^ F ¬ P F P 1 ..^ F
34 33 anbi2d F Trails G P Fun P 1 ..^ F -1 P 0 F P 1 ..^ F = Fun P 1 ..^ F -1 P 0 P 1 ..^ F ¬ P F P 1 ..^ F
35 ancom P 0 P 1 ..^ F ¬ P F P 1 ..^ F ¬ P F P 1 ..^ F P 0 P 1 ..^ F
36 35 bianass Fun P 1 ..^ F -1 P 0 P 1 ..^ F ¬ P F P 1 ..^ F Fun P 1 ..^ F -1 ¬ P F P 1 ..^ F P 0 P 1 ..^ F
37 36 a1i F Trails G P Fun P 1 ..^ F -1 P 0 P 1 ..^ F ¬ P F P 1 ..^ F Fun P 1 ..^ F -1 ¬ P F P 1 ..^ F P 0 P 1 ..^ F
38 noel ¬ P F
39 38 biantru Fun P -1 Fun P -1 ¬ P F
40 39 bicomi Fun P -1 ¬ P F Fun P -1
41 40 a1i F = 0 Fun P -1 ¬ P F Fun P -1
42 oveq2 F = 0 1 ..^ F = 1 ..^ 0
43 0le1 0 1
44 1z 1
45 0z 0
46 fzon 1 0 0 1 1 ..^ 0 =
47 44 45 46 mp2an 0 1 1 ..^ 0 =
48 43 47 mpbi 1 ..^ 0 =
49 42 48 eqtrdi F = 0 1 ..^ F =
50 49 reseq2d F = 0 P 1 ..^ F = P
51 50 cnveqd F = 0 P 1 ..^ F -1 = P -1
52 51 funeqd F = 0 Fun P 1 ..^ F -1 Fun P -1
53 49 imaeq2d F = 0 P 1 ..^ F = P
54 ima0 P =
55 53 54 eqtrdi F = 0 P 1 ..^ F =
56 55 eleq2d F = 0 P F P 1 ..^ F P F
57 56 notbid F = 0 ¬ P F P 1 ..^ F ¬ P F
58 52 57 anbi12d F = 0 Fun P 1 ..^ F -1 ¬ P F P 1 ..^ F Fun P -1 ¬ P F
59 oveq2 F = 0 1 F = 1 0
60 fz10 1 0 =
61 59 60 eqtrdi F = 0 1 F =
62 61 reseq2d F = 0 P 1 F = P
63 62 cnveqd F = 0 P 1 F -1 = P -1
64 63 funeqd F = 0 Fun P 1 F -1 Fun P -1
65 41 58 64 3bitr4d F = 0 Fun P 1 ..^ F -1 ¬ P F P 1 ..^ F Fun P 1 F -1
66 65 a1d F = 0 F Trails G P Fun P 1 ..^ F -1 ¬ P F P 1 ..^ F Fun P 1 F -1
67 df-nel P F P 1 ..^ F ¬ P F P 1 ..^ F
68 67 bicomi ¬ P F P 1 ..^ F P F P 1 ..^ F
69 68 anbi2i Fun P 1 ..^ F -1 ¬ P F P 1 ..^ F Fun P 1 ..^ F -1 P F P 1 ..^ F
70 trliswlk F Trails G P F Walks G P
71 3 10 sylib F Walks G P F 0 F
72 fzonel ¬ F 1 ..^ F
73 72 a1i F Walks G P ¬ F 1 ..^ F
74 71 73 eldifd F Walks G P F 0 F 1 ..^ F
75 1eluzge0 1 0
76 fzoss1 1 0 1 ..^ F 0 ..^ F
77 75 76 mp1i F Walks G P 1 ..^ F 0 ..^ F
78 fzossfz 0 ..^ F 0 F
79 77 78 sstrdi F Walks G P 1 ..^ F 0 F
80 5 74 79 3jca F Walks G P P : 0 F Vtx G F 0 F 1 ..^ F 1 ..^ F 0 F
81 resf1ext2b P : 0 F Vtx G F 0 F 1 ..^ F 1 ..^ F 0 F Fun P 1 ..^ F -1 P F P 1 ..^ F Fun P 1 ..^ F F -1
82 70 80 81 3syl F Trails G P Fun P 1 ..^ F -1 P F P 1 ..^ F Fun P 1 ..^ F F -1
83 69 82 bitrid F Trails G P Fun P 1 ..^ F -1 ¬ P F P 1 ..^ F Fun P 1 ..^ F F -1
84 83 adantl F 0 F Trails G P Fun P 1 ..^ F -1 ¬ P F P 1 ..^ F Fun P 1 ..^ F F -1
85 elnnne0 F F 0 F 0
86 elnnuz F F 1
87 85 86 sylbb1 F 0 F 0 F 1
88 87 ex F 0 F 0 F 1
89 70 3 88 3syl F Trails G P F 0 F 1
90 89 impcom F 0 F Trails G P F 1
91 fzisfzounsn F 1 1 F = 1 ..^ F F
92 90 91 syl F 0 F Trails G P 1 F = 1 ..^ F F
93 92 eqcomd F 0 F Trails G P 1 ..^ F F = 1 F
94 93 reseq2d F 0 F Trails G P P 1 ..^ F F = P 1 F
95 94 cnveqd F 0 F Trails G P P 1 ..^ F F -1 = P 1 F -1
96 95 funeqd F 0 F Trails G P Fun P 1 ..^ F F -1 Fun P 1 F -1
97 84 96 bitrd F 0 F Trails G P Fun P 1 ..^ F -1 ¬ P F P 1 ..^ F Fun P 1 F -1
98 97 ex F 0 F Trails G P Fun P 1 ..^ F -1 ¬ P F P 1 ..^ F Fun P 1 F -1
99 66 98 pm2.61ine F Trails G P Fun P 1 ..^ F -1 ¬ P F P 1 ..^ F Fun P 1 F -1
100 99 anbi1d F Trails G P Fun P 1 ..^ F -1 ¬ P F P 1 ..^ F P 0 P 1 ..^ F Fun P 1 F -1 P 0 P 1 ..^ F
101 34 37 100 3bitrd F Trails G P Fun P 1 ..^ F -1 P 0 F P 1 ..^ F = Fun P 1 F -1 P 0 P 1 ..^ F
102 101 pm5.32i F Trails G P Fun P 1 ..^ F -1 P 0 F P 1 ..^ F = F Trails G P Fun P 1 F -1 P 0 P 1 ..^ F
103 3anass F Trails G P Fun P 1 ..^ F -1 P 0 F P 1 ..^ F = F Trails G P Fun P 1 ..^ F -1 P 0 F P 1 ..^ F =
104 3anass F Trails G P Fun P 1 F -1 P 0 P 1 ..^ F F Trails G P Fun P 1 F -1 P 0 P 1 ..^ F
105 102 103 104 3bitr4i F Trails G P Fun P 1 ..^ F -1 P 0 F P 1 ..^ F = F Trails G P Fun P 1 F -1 P 0 P 1 ..^ F
106 1 105 bitri F Paths G P F Trails G P Fun P 1 F -1 P 0 P 1 ..^ F