Metamath Proof Explorer


Theorem dihglblem3N

Description: Isomorphism H of a lattice glb. (Contributed by NM, 20-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dihglblem.b B = Base K
dihglblem.l ˙ = K
dihglblem.m ˙ = meet K
dihglblem.g G = glb K
dihglblem.h H = LHyp K
dihglblem.t T = u B | v S u = v ˙ W
dihglblem.i J = DIsoB K W
dihglblem.ih I = DIsoH K W
Assertion dihglblem3N K HL W H S B S G S ˙ W I G T = x T I x

Proof

Step Hyp Ref Expression
1 dihglblem.b B = Base K
2 dihglblem.l ˙ = K
3 dihglblem.m ˙ = meet K
4 dihglblem.g G = glb K
5 dihglblem.h H = LHyp K
6 dihglblem.t T = u B | v S u = v ˙ W
7 dihglblem.i J = DIsoB K W
8 dihglblem.ih I = DIsoH K W
9 simp1 K HL W H S B S G S ˙ W K HL W H
10 simp11l K HL W H S B S G S ˙ W u B v S K HL
11 10 hllatd K HL W H S B S G S ˙ W u B v S K Lat
12 simp12l K HL W H S B S G S ˙ W u B v S S B
13 simp3 K HL W H S B S G S ˙ W u B v S v S
14 12 13 sseldd K HL W H S B S G S ˙ W u B v S v B
15 simp11r K HL W H S B S G S ˙ W u B v S W H
16 1 5 lhpbase W H W B
17 15 16 syl K HL W H S B S G S ˙ W u B v S W B
18 1 2 3 latmle2 K Lat v B W B v ˙ W ˙ W
19 11 14 17 18 syl3anc K HL W H S B S G S ˙ W u B v S v ˙ W ˙ W
20 19 3expia K HL W H S B S G S ˙ W u B v S v ˙ W ˙ W
21 breq1 u = v ˙ W u ˙ W v ˙ W ˙ W
22 21 biimprcd v ˙ W ˙ W u = v ˙ W u ˙ W
23 20 22 syl6 K HL W H S B S G S ˙ W u B v S u = v ˙ W u ˙ W
24 23 rexlimdv K HL W H S B S G S ˙ W u B v S u = v ˙ W u ˙ W
25 24 ss2rabdv K HL W H S B S G S ˙ W u B | v S u = v ˙ W u B | u ˙ W
26 6 25 eqsstrid K HL W H S B S G S ˙ W T u B | u ˙ W
27 1 2 5 7 dibdmN K HL W H dom J = u B | u ˙ W
28 27 3ad2ant1 K HL W H S B S G S ˙ W dom J = u B | u ˙ W
29 26 28 sseqtrrd K HL W H S B S G S ˙ W T dom J
30 1 2 3 4 5 6 dihglblem2aN K HL W H S B S T
31 30 3adant3 K HL W H S B S G S ˙ W T
32 4 5 7 dibglbN K HL W H T dom J T J G T = x T J x
33 9 29 31 32 syl12anc K HL W H S B S G S ˙ W J G T = x T J x
34 1 2 3 4 5 6 dihglblem2N K HL W H S B G S ˙ W G S = G T
35 34 3adant2r K HL W H S B S G S ˙ W G S = G T
36 35 fveq2d K HL W H S B S G S ˙ W J G S = J G T
37 simpl1 K HL W H S B S G S ˙ W x T K HL W H
38 26 sselda K HL W H S B S G S ˙ W x T x u B | u ˙ W
39 breq1 u = x u ˙ W x ˙ W
40 39 elrab x u B | u ˙ W x B x ˙ W
41 38 40 sylib K HL W H S B S G S ˙ W x T x B x ˙ W
42 1 2 5 8 7 dihvalb K HL W H x B x ˙ W I x = J x
43 37 41 42 syl2anc K HL W H S B S G S ˙ W x T I x = J x
44 43 iineq2dv K HL W H S B S G S ˙ W x T I x = x T J x
45 33 36 44 3eqtr4rd K HL W H S B S G S ˙ W x T I x = J G S
46 simp1l K HL W H S B S G S ˙ W K HL
47 hlclat K HL K CLat
48 46 47 syl K HL W H S B S G S ˙ W K CLat
49 simp2l K HL W H S B S G S ˙ W S B
50 1 4 clatglbcl K CLat S B G S B
51 48 49 50 syl2anc K HL W H S B S G S ˙ W G S B
52 simp3 K HL W H S B S G S ˙ W G S ˙ W
53 1 2 5 8 7 dihvalb K HL W H G S B G S ˙ W I G S = J G S
54 9 51 52 53 syl12anc K HL W H S B S G S ˙ W I G S = J G S
55 35 fveq2d K HL W H S B S G S ˙ W I G S = I G T
56 45 54 55 3eqtr2rd K HL W H S B S G S ˙ W I G T = x T I x