Metamath Proof Explorer


Theorem divcn

Description: Complex number division is a continuous function, when the second argument is nonzero. (Contributed by Mario Carneiro, 12-Aug-2014)

Ref Expression
Hypotheses addcn.j J=TopOpenfld
divcn.k K=J𝑡0
Assertion divcn ÷J×tKCnJ

Proof

Step Hyp Ref Expression
1 addcn.j J=TopOpenfld
2 divcn.k K=J𝑡0
3 df-div ÷=x,y0ιz|yz=x
4 eldifsn y0yy0
5 divval xyy0xy=ιz|yz=x
6 divrec xyy0xy=x1y
7 5 6 eqtr3d xyy0ιz|yz=x=x1y
8 7 3expb xyy0ιz|yz=x=x1y
9 4 8 sylan2b xy0ιz|yz=x=x1y
10 9 mpoeq3ia x,y0ιz|yz=x=x,y0x1y
11 3 10 eqtri ÷=x,y0x1y
12 1 cnfldtopon JTopOn
13 12 a1i JTopOn
14 difss 0
15 resttopon JTopOn0J𝑡0TopOn0
16 13 14 15 sylancl J𝑡0TopOn0
17 2 16 eqeltrid KTopOn0
18 13 17 cnmpt1st x,y0xJ×tKCnJ
19 13 17 cnmpt2nd x,y0yJ×tKCnK
20 eqid z01z=z01z
21 eldifsn z0zz0
22 reccl zz01z
23 21 22 sylbi z01z
24 20 23 fmpti z01z:0
25 eqid if1xy1xyx2=if1xy1xyx2
26 25 reccn2 x0y+u+w0wx<u1w1x<y
27 ovres x0w0xabs0×0w=xabsw
28 eldifi x0x
29 eldifi w0w
30 eqid abs=abs
31 30 cnmetdval xwxabsw=xw
32 abssub xwxw=wx
33 31 32 eqtrd xwxabsw=wx
34 28 29 33 syl2an x0w0xabsw=wx
35 27 34 eqtrd x0w0xabs0×0w=wx
36 35 breq1d x0w0xabs0×0w<uwx<u
37 oveq2 z=x1z=1x
38 ovex 1xV
39 37 20 38 fvmpt x0z01zx=1x
40 oveq2 z=w1z=1w
41 ovex 1wV
42 40 20 41 fvmpt w0z01zw=1w
43 39 42 oveqan12d x0w0z01zxabsz01zw=1xabs1w
44 eldifsn x0xx0
45 reccl xx01x
46 44 45 sylbi x01x
47 eldifsn w0ww0
48 reccl ww01w
49 47 48 sylbi w01w
50 30 cnmetdval 1x1w1xabs1w=1x1w
51 abssub 1x1w1x1w=1w1x
52 50 51 eqtrd 1x1w1xabs1w=1w1x
53 46 49 52 syl2an x0w01xabs1w=1w1x
54 43 53 eqtrd x0w0z01zxabsz01zw=1w1x
55 54 breq1d x0w0z01zxabsz01zw<y1w1x<y
56 36 55 imbi12d x0w0xabs0×0w<uz01zxabsz01zw<ywx<u1w1x<y
57 56 ralbidva x0w0xabs0×0w<uz01zxabsz01zw<yw0wx<u1w1x<y
58 57 rexbidv x0u+w0xabs0×0w<uz01zxabsz01zw<yu+w0wx<u1w1x<y
59 58 adantr x0y+u+w0xabs0×0w<uz01zxabsz01zw<yu+w0wx<u1w1x<y
60 26 59 mpbird x0y+u+w0xabs0×0w<uz01zxabsz01zw<y
61 60 rgen2 x0y+u+w0xabs0×0w<uz01zxabsz01zw<y
62 cnxmet abs∞Met
63 xmetres2 abs∞Met0abs0×0∞Met0
64 62 14 63 mp2an abs0×0∞Met0
65 eqid abs0×0=abs0×0
66 1 cnfldtopn J=MetOpenabs
67 eqid MetOpenabs0×0=MetOpenabs0×0
68 65 66 67 metrest abs∞Met0J𝑡0=MetOpenabs0×0
69 62 14 68 mp2an J𝑡0=MetOpenabs0×0
70 2 69 eqtri K=MetOpenabs0×0
71 70 66 metcn abs0×0∞Met0abs∞Metz01zKCnJz01z:0x0y+u+w0xabs0×0w<uz01zxabsz01zw<y
72 64 62 71 mp2an z01zKCnJz01z:0x0y+u+w0xabs0×0w<uz01zxabsz01zw<y
73 24 61 72 mpbir2an z01zKCnJ
74 73 a1i z01zKCnJ
75 oveq2 z=y1z=1y
76 13 17 19 17 74 75 cnmpt21 x,y01yJ×tKCnJ
77 1 mulcn ×J×tJCnJ
78 77 a1i ×J×tJCnJ
79 13 17 18 76 78 cnmpt22f x,y0x1yJ×tKCnJ
80 79 mptru x,y0x1yJ×tKCnJ
81 11 80 eqeltri ÷J×tKCnJ