| Step | Hyp | Ref | Expression | 
						
							| 1 |  | docacl.h |  | 
						
							| 2 |  | docacl.t |  | 
						
							| 3 |  | docacl.i |  | 
						
							| 4 |  | docacl.n |  | 
						
							| 5 |  | eqid |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 | 5 6 7 1 2 3 4 | docavalN |  | 
						
							| 9 | 1 3 | diaf11N |  | 
						
							| 10 |  | f1ofun |  | 
						
							| 11 | 9 10 | syl |  | 
						
							| 12 | 11 | adantr |  | 
						
							| 13 |  | hllat |  | 
						
							| 14 | 13 | ad2antrr |  | 
						
							| 15 |  | hlop |  | 
						
							| 16 | 15 | ad2antrr |  | 
						
							| 17 |  | simpl |  | 
						
							| 18 |  | ssrab2 |  | 
						
							| 19 | 18 | a1i |  | 
						
							| 20 | 1 2 3 | dia1elN |  | 
						
							| 21 | 20 | anim1i |  | 
						
							| 22 |  | sseq2 |  | 
						
							| 23 | 22 | elrab |  | 
						
							| 24 | 21 23 | sylibr |  | 
						
							| 25 | 24 | ne0d |  | 
						
							| 26 | 1 3 | diaintclN |  | 
						
							| 27 | 17 19 25 26 | syl12anc |  | 
						
							| 28 | 1 3 | diacnvclN |  | 
						
							| 29 | 27 28 | syldan |  | 
						
							| 30 |  | eqid |  | 
						
							| 31 | 30 1 3 | diadmclN |  | 
						
							| 32 | 29 31 | syldan |  | 
						
							| 33 | 30 7 | opoccl |  | 
						
							| 34 | 16 32 33 | syl2anc |  | 
						
							| 35 | 30 1 | lhpbase |  | 
						
							| 36 | 35 | ad2antlr |  | 
						
							| 37 | 30 7 | opoccl |  | 
						
							| 38 | 16 36 37 | syl2anc |  | 
						
							| 39 | 30 5 | latjcl |  | 
						
							| 40 | 14 34 38 39 | syl3anc |  | 
						
							| 41 | 30 6 | latmcl |  | 
						
							| 42 | 14 40 36 41 | syl3anc |  | 
						
							| 43 |  | eqid |  | 
						
							| 44 | 30 43 6 | latmle2 |  | 
						
							| 45 | 14 40 36 44 | syl3anc |  | 
						
							| 46 | 30 43 1 3 | diaeldm |  | 
						
							| 47 | 46 | adantr |  | 
						
							| 48 | 42 45 47 | mpbir2and |  | 
						
							| 49 |  | fvelrn |  | 
						
							| 50 | 12 48 49 | syl2anc |  | 
						
							| 51 | 8 50 | eqeltrd |  |