Metamath Proof Explorer


Theorem docaclN

Description: Closure of subspace orthocomplement for DVecA partial vector space. (Contributed by NM, 6-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses docacl.h H=LHypK
docacl.t T=LTrnKW
docacl.i I=DIsoAKW
docacl.n ˙=ocAKW
Assertion docaclN KHLWHXT˙XranI

Proof

Step Hyp Ref Expression
1 docacl.h H=LHypK
2 docacl.t T=LTrnKW
3 docacl.i I=DIsoAKW
4 docacl.n ˙=ocAKW
5 eqid joinK=joinK
6 eqid meetK=meetK
7 eqid ocK=ocK
8 5 6 7 1 2 3 4 docavalN KHLWHXT˙X=IocKI-1zranI|XzjoinKocKWmeetKW
9 1 3 diaf11N KHLWHI:domI1-1 ontoranI
10 f1ofun I:domI1-1 ontoranIFunI
11 9 10 syl KHLWHFunI
12 11 adantr KHLWHXTFunI
13 hllat KHLKLat
14 13 ad2antrr KHLWHXTKLat
15 hlop KHLKOP
16 15 ad2antrr KHLWHXTKOP
17 simpl KHLWHXTKHLWH
18 ssrab2 zranI|XzranI
19 18 a1i KHLWHXTzranI|XzranI
20 1 2 3 dia1elN KHLWHTranI
21 20 anim1i KHLWHXTTranIXT
22 sseq2 z=TXzXT
23 22 elrab TzranI|XzTranIXT
24 21 23 sylibr KHLWHXTTzranI|Xz
25 24 ne0d KHLWHXTzranI|Xz
26 1 3 diaintclN KHLWHzranI|XzranIzranI|XzzranI|XzranI
27 17 19 25 26 syl12anc KHLWHXTzranI|XzranI
28 1 3 diacnvclN KHLWHzranI|XzranII-1zranI|XzdomI
29 27 28 syldan KHLWHXTI-1zranI|XzdomI
30 eqid BaseK=BaseK
31 30 1 3 diadmclN KHLWHI-1zranI|XzdomII-1zranI|XzBaseK
32 29 31 syldan KHLWHXTI-1zranI|XzBaseK
33 30 7 opoccl KOPI-1zranI|XzBaseKocKI-1zranI|XzBaseK
34 16 32 33 syl2anc KHLWHXTocKI-1zranI|XzBaseK
35 30 1 lhpbase WHWBaseK
36 35 ad2antlr KHLWHXTWBaseK
37 30 7 opoccl KOPWBaseKocKWBaseK
38 16 36 37 syl2anc KHLWHXTocKWBaseK
39 30 5 latjcl KLatocKI-1zranI|XzBaseKocKWBaseKocKI-1zranI|XzjoinKocKWBaseK
40 14 34 38 39 syl3anc KHLWHXTocKI-1zranI|XzjoinKocKWBaseK
41 30 6 latmcl KLatocKI-1zranI|XzjoinKocKWBaseKWBaseKocKI-1zranI|XzjoinKocKWmeetKWBaseK
42 14 40 36 41 syl3anc KHLWHXTocKI-1zranI|XzjoinKocKWmeetKWBaseK
43 eqid K=K
44 30 43 6 latmle2 KLatocKI-1zranI|XzjoinKocKWBaseKWBaseKocKI-1zranI|XzjoinKocKWmeetKWKW
45 14 40 36 44 syl3anc KHLWHXTocKI-1zranI|XzjoinKocKWmeetKWKW
46 30 43 1 3 diaeldm KHLWHocKI-1zranI|XzjoinKocKWmeetKWdomIocKI-1zranI|XzjoinKocKWmeetKWBaseKocKI-1zranI|XzjoinKocKWmeetKWKW
47 46 adantr KHLWHXTocKI-1zranI|XzjoinKocKWmeetKWdomIocKI-1zranI|XzjoinKocKWmeetKWBaseKocKI-1zranI|XzjoinKocKWmeetKWKW
48 42 45 47 mpbir2and KHLWHXTocKI-1zranI|XzjoinKocKWmeetKWdomI
49 fvelrn FunIocKI-1zranI|XzjoinKocKWmeetKWdomIIocKI-1zranI|XzjoinKocKWmeetKWranI
50 12 48 49 syl2anc KHLWHXTIocKI-1zranI|XzjoinKocKWmeetKWranI
51 8 50 eqeltrd KHLWHXT˙XranI