Metamath Proof Explorer


Theorem dochexmidlem6

Description: Lemma for dochexmid . (Contributed by NM, 15-Jan-2015)

Ref Expression
Hypotheses dochexmidlem1.h H=LHypK
dochexmidlem1.o ˙=ocHKW
dochexmidlem1.u U=DVecHKW
dochexmidlem1.v V=BaseU
dochexmidlem1.s S=LSubSpU
dochexmidlem1.n N=LSpanU
dochexmidlem1.p ˙=LSSumU
dochexmidlem1.a A=LSAtomsU
dochexmidlem1.k φKHLWH
dochexmidlem1.x φXS
dochexmidlem6.pp φpA
dochexmidlem6.z 0˙=0U
dochexmidlem6.m M=X˙p
dochexmidlem6.xn φX0˙
dochexmidlem6.c φ˙˙X=X
dochexmidlem6.pl φ¬pX˙˙X
Assertion dochexmidlem6 φM=X

Proof

Step Hyp Ref Expression
1 dochexmidlem1.h H=LHypK
2 dochexmidlem1.o ˙=ocHKW
3 dochexmidlem1.u U=DVecHKW
4 dochexmidlem1.v V=BaseU
5 dochexmidlem1.s S=LSubSpU
6 dochexmidlem1.n N=LSpanU
7 dochexmidlem1.p ˙=LSSumU
8 dochexmidlem1.a A=LSAtomsU
9 dochexmidlem1.k φKHLWH
10 dochexmidlem1.x φXS
11 dochexmidlem6.pp φpA
12 dochexmidlem6.z 0˙=0U
13 dochexmidlem6.m M=X˙p
14 dochexmidlem6.xn φX0˙
15 dochexmidlem6.c φ˙˙X=X
16 dochexmidlem6.pl φ¬pX˙˙X
17 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 dochexmidlem5 φ˙XM=0˙
18 17 fveq2d φ˙˙XM=˙0˙
19 1 3 2 4 12 doch0 KHLWH˙0˙=V
20 9 19 syl φ˙0˙=V
21 18 20 eqtrd φ˙˙XM=V
22 21 ineq1d φ˙˙XMM=VM
23 eqid DIsoHKW=DIsoHKW
24 4 5 lssss XSXV
25 10 24 syl φXV
26 1 3 4 2 dochssv KHLWHXV˙XV
27 9 25 26 syl2anc φ˙XV
28 1 23 3 4 2 dochcl KHLWH˙XV˙˙XranDIsoHKW
29 9 27 28 syl2anc φ˙˙XranDIsoHKW
30 15 29 eqeltrrd φXranDIsoHKW
31 1 23 3 7 8 9 30 11 dihsmatrn φX˙pranDIsoHKW
32 13 31 eqeltrid φMranDIsoHKW
33 1 3 23 5 dihrnlss KHLWHMranDIsoHKWMS
34 9 32 33 syl2anc φMS
35 1 3 9 dvhlmod φULMod
36 5 8 35 11 lsatlssel φpS
37 5 7 lsmcl ULModXSpSX˙pS
38 35 10 36 37 syl3anc φX˙pS
39 4 5 lssss X˙pSX˙pV
40 38 39 syl φX˙pV
41 13 40 eqsstrid φMV
42 1 23 3 4 2 9 41 dochoccl φMranDIsoHKW˙˙M=M
43 32 42 mpbid φ˙˙M=M
44 5 lsssssubg ULModSSubGrpU
45 35 44 syl φSSubGrpU
46 45 10 sseldd φXSubGrpU
47 45 36 sseldd φpSubGrpU
48 7 lsmub1 XSubGrpUpSubGrpUXX˙p
49 46 47 48 syl2anc φXX˙p
50 49 13 sseqtrrdi φXM
51 1 3 5 2 9 10 34 43 50 dihoml4 φ˙˙XMM=˙˙X
52 sseqin2 MVVM=M
53 41 52 sylib φVM=M
54 22 51 53 3eqtr3rd φM=˙˙X
55 54 15 eqtrd φM=X