Description: Lemma for dochexmid . (Contributed by NM, 15-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dochexmidlem1.h | |
|
dochexmidlem1.o | |
||
dochexmidlem1.u | |
||
dochexmidlem1.v | |
||
dochexmidlem1.s | |
||
dochexmidlem1.n | |
||
dochexmidlem1.p | |
||
dochexmidlem1.a | |
||
dochexmidlem1.k | |
||
dochexmidlem1.x | |
||
dochexmidlem6.pp | |
||
dochexmidlem6.z | |
||
dochexmidlem6.m | |
||
dochexmidlem6.xn | |
||
dochexmidlem6.c | |
||
dochexmidlem6.pl | |
||
Assertion | dochexmidlem6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochexmidlem1.h | |
|
2 | dochexmidlem1.o | |
|
3 | dochexmidlem1.u | |
|
4 | dochexmidlem1.v | |
|
5 | dochexmidlem1.s | |
|
6 | dochexmidlem1.n | |
|
7 | dochexmidlem1.p | |
|
8 | dochexmidlem1.a | |
|
9 | dochexmidlem1.k | |
|
10 | dochexmidlem1.x | |
|
11 | dochexmidlem6.pp | |
|
12 | dochexmidlem6.z | |
|
13 | dochexmidlem6.m | |
|
14 | dochexmidlem6.xn | |
|
15 | dochexmidlem6.c | |
|
16 | dochexmidlem6.pl | |
|
17 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 | dochexmidlem5 | |
18 | 17 | fveq2d | |
19 | 1 3 2 4 12 | doch0 | |
20 | 9 19 | syl | |
21 | 18 20 | eqtrd | |
22 | 21 | ineq1d | |
23 | eqid | |
|
24 | 4 5 | lssss | |
25 | 10 24 | syl | |
26 | 1 3 4 2 | dochssv | |
27 | 9 25 26 | syl2anc | |
28 | 1 23 3 4 2 | dochcl | |
29 | 9 27 28 | syl2anc | |
30 | 15 29 | eqeltrrd | |
31 | 1 23 3 7 8 9 30 11 | dihsmatrn | |
32 | 13 31 | eqeltrid | |
33 | 1 3 23 5 | dihrnlss | |
34 | 9 32 33 | syl2anc | |
35 | 1 3 9 | dvhlmod | |
36 | 5 8 35 11 | lsatlssel | |
37 | 5 7 | lsmcl | |
38 | 35 10 36 37 | syl3anc | |
39 | 4 5 | lssss | |
40 | 38 39 | syl | |
41 | 13 40 | eqsstrid | |
42 | 1 23 3 4 2 9 41 | dochoccl | |
43 | 32 42 | mpbid | |
44 | 5 | lsssssubg | |
45 | 35 44 | syl | |
46 | 45 10 | sseldd | |
47 | 45 36 | sseldd | |
48 | 7 | lsmub1 | |
49 | 46 47 48 | syl2anc | |
50 | 49 13 | sseqtrrdi | |
51 | 1 3 5 2 9 10 34 43 50 | dihoml4 | |
52 | sseqin2 | |
|
53 | 41 52 | sylib | |
54 | 22 51 53 | 3eqtr3rd | |
55 | 54 15 | eqtrd | |