Description: Orthocomplement of a closed subspace. (Contributed by NM, 14-Mar-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dochvalr.o | |
|
dochvalr.h | |
||
dochvalr.i | |
||
dochvalr.n | |
||
Assertion | dochvalr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dochvalr.o | |
|
2 | dochvalr.h | |
|
3 | dochvalr.i | |
|
4 | dochvalr.n | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | 2 5 3 6 | dihrnss | |
8 | eqid | |
|
9 | eqid | |
|
10 | 8 9 1 2 3 5 6 4 | dochval | |
11 | 7 10 | syldan | |
12 | eqid | |
|
13 | hllat | |
|
14 | 13 | ad2antrr | |
15 | hlclat | |
|
16 | 15 | ad2antrr | |
17 | ssrab2 | |
|
18 | 8 9 | clatglbcl | |
19 | 16 17 18 | sylancl | |
20 | 8 2 3 | dihcnvcl | |
21 | 17 | a1i | |
22 | ssid | |
|
23 | 2 3 | dihcnvid2 | |
24 | 22 23 | sseqtrrid | |
25 | fveq2 | |
|
26 | 25 | sseq2d | |
27 | 26 | elrab | |
28 | 20 24 27 | sylanbrc | |
29 | 8 12 9 | clatglble | |
30 | 16 21 28 29 | syl3anc | |
31 | fveq2 | |
|
32 | 31 | sseq2d | |
33 | 32 | elrab | |
34 | 23 | adantr | |
35 | 34 | sseq1d | |
36 | simpll | |
|
37 | 20 | adantr | |
38 | simpr | |
|
39 | 8 12 2 3 | dihord | |
40 | 36 37 38 39 | syl3anc | |
41 | 35 40 | bitr3d | |
42 | 41 | biimpd | |
43 | 42 | expimpd | |
44 | 33 43 | biimtrid | |
45 | 44 | ralrimiv | |
46 | 8 12 9 | clatleglb | |
47 | 16 20 21 46 | syl3anc | |
48 | 45 47 | mpbird | |
49 | 8 12 14 19 20 30 48 | latasymd | |
50 | 49 | fveq2d | |
51 | 50 | fveq2d | |
52 | 11 51 | eqtrd | |