Metamath Proof Explorer


Theorem dochvalr

Description: Orthocomplement of a closed subspace. (Contributed by NM, 14-Mar-2014)

Ref Expression
Hypotheses dochvalr.o ˙=ocK
dochvalr.h H=LHypK
dochvalr.i I=DIsoHKW
dochvalr.n N=ocHKW
Assertion dochvalr KHLWHXranINX=I˙I-1X

Proof

Step Hyp Ref Expression
1 dochvalr.o ˙=ocK
2 dochvalr.h H=LHypK
3 dochvalr.i I=DIsoHKW
4 dochvalr.n N=ocHKW
5 eqid DVecHKW=DVecHKW
6 eqid BaseDVecHKW=BaseDVecHKW
7 2 5 3 6 dihrnss KHLWHXranIXBaseDVecHKW
8 eqid BaseK=BaseK
9 eqid glbK=glbK
10 8 9 1 2 3 5 6 4 dochval KHLWHXBaseDVecHKWNX=I˙glbKyBaseK|XIy
11 7 10 syldan KHLWHXranINX=I˙glbKyBaseK|XIy
12 eqid K=K
13 hllat KHLKLat
14 13 ad2antrr KHLWHXranIKLat
15 hlclat KHLKCLat
16 15 ad2antrr KHLWHXranIKCLat
17 ssrab2 yBaseK|XIyBaseK
18 8 9 clatglbcl KCLatyBaseK|XIyBaseKglbKyBaseK|XIyBaseK
19 16 17 18 sylancl KHLWHXranIglbKyBaseK|XIyBaseK
20 8 2 3 dihcnvcl KHLWHXranII-1XBaseK
21 17 a1i KHLWHXranIyBaseK|XIyBaseK
22 ssid XX
23 2 3 dihcnvid2 KHLWHXranIII-1X=X
24 22 23 sseqtrrid KHLWHXranIXII-1X
25 fveq2 y=I-1XIy=II-1X
26 25 sseq2d y=I-1XXIyXII-1X
27 26 elrab I-1XyBaseK|XIyI-1XBaseKXII-1X
28 20 24 27 sylanbrc KHLWHXranII-1XyBaseK|XIy
29 8 12 9 clatglble KCLatyBaseK|XIyBaseKI-1XyBaseK|XIyglbKyBaseK|XIyKI-1X
30 16 21 28 29 syl3anc KHLWHXranIglbKyBaseK|XIyKI-1X
31 fveq2 y=zIy=Iz
32 31 sseq2d y=zXIyXIz
33 32 elrab zyBaseK|XIyzBaseKXIz
34 23 adantr KHLWHXranIzBaseKII-1X=X
35 34 sseq1d KHLWHXranIzBaseKII-1XIzXIz
36 simpll KHLWHXranIzBaseKKHLWH
37 20 adantr KHLWHXranIzBaseKI-1XBaseK
38 simpr KHLWHXranIzBaseKzBaseK
39 8 12 2 3 dihord KHLWHI-1XBaseKzBaseKII-1XIzI-1XKz
40 36 37 38 39 syl3anc KHLWHXranIzBaseKII-1XIzI-1XKz
41 35 40 bitr3d KHLWHXranIzBaseKXIzI-1XKz
42 41 biimpd KHLWHXranIzBaseKXIzI-1XKz
43 42 expimpd KHLWHXranIzBaseKXIzI-1XKz
44 33 43 biimtrid KHLWHXranIzyBaseK|XIyI-1XKz
45 44 ralrimiv KHLWHXranIzyBaseK|XIyI-1XKz
46 8 12 9 clatleglb KCLatI-1XBaseKyBaseK|XIyBaseKI-1XKglbKyBaseK|XIyzyBaseK|XIyI-1XKz
47 16 20 21 46 syl3anc KHLWHXranII-1XKglbKyBaseK|XIyzyBaseK|XIyI-1XKz
48 45 47 mpbird KHLWHXranII-1XKglbKyBaseK|XIy
49 8 12 14 19 20 30 48 latasymd KHLWHXranIglbKyBaseK|XIy=I-1X
50 49 fveq2d KHLWHXranI˙glbKyBaseK|XIy=˙I-1X
51 50 fveq2d KHLWHXranII˙glbKyBaseK|XIy=I˙I-1X
52 11 51 eqtrd KHLWHXranINX=I˙I-1X