Description: The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvcmul.s | |
|
dvcmul.f | |
||
dvcmul.a | |
||
dvcmul.x | |
||
dvcmul.c | |
||
Assertion | dvcmul | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvcmul.s | |
|
2 | dvcmul.f | |
|
3 | dvcmul.a | |
|
4 | dvcmul.x | |
|
5 | dvcmul.c | |
|
6 | fconst6g | |
|
7 | 3 6 | syl | |
8 | ssidd | |
|
9 | recnprss | |
|
10 | 1 9 | syl | |
11 | 10 2 4 | dvbss | |
12 | 11 5 | sseldd | |
13 | 4 12 | sseldd | |
14 | fconst6g | |
|
15 | 3 14 | syl | |
16 | ssidd | |
|
17 | dvconst | |
|
18 | 3 17 | syl | |
19 | 18 | dmeqd | |
20 | c0ex | |
|
21 | 20 | fconst | |
22 | 21 | fdmi | |
23 | 19 22 | eqtrdi | |
24 | 10 23 | sseqtrrd | |
25 | dvres3 | |
|
26 | 1 15 16 24 25 | syl22anc | |
27 | xpssres | |
|
28 | 10 27 | syl | |
29 | 28 | oveq2d | |
30 | 18 | reseq1d | |
31 | xpssres | |
|
32 | 10 31 | syl | |
33 | 30 32 | eqtrd | |
34 | 26 29 33 | 3eqtr3d | |
35 | 20 | fconst2 | |
36 | 34 35 | sylibr | |
37 | 36 | fdmd | |
38 | 13 37 | eleqtrrd | |
39 | 7 8 2 4 1 38 5 | dvmul | |
40 | 34 | fveq1d | |
41 | 20 | fvconst2 | |
42 | 13 41 | syl | |
43 | 40 42 | eqtrd | |
44 | 43 | oveq1d | |
45 | 2 12 | ffvelcdmd | |
46 | 45 | mul02d | |
47 | 44 46 | eqtrd | |
48 | fvconst2g | |
|
49 | 3 13 48 | syl2anc | |
50 | 49 | oveq2d | |
51 | dvfg | |
|
52 | 1 51 | syl | |
53 | 52 5 | ffvelcdmd | |
54 | 53 3 | mulcomd | |
55 | 50 54 | eqtrd | |
56 | 47 55 | oveq12d | |
57 | 3 53 | mulcld | |
58 | 57 | addlidd | |
59 | 39 56 58 | 3eqtrd | |