Metamath Proof Explorer


Theorem dvcmul

Description: The product rule when one argument is a constant. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)

Ref Expression
Hypotheses dvcmul.s φS
dvcmul.f φF:X
dvcmul.a φA
dvcmul.x φXS
dvcmul.c φCdomFS
Assertion dvcmul φS×A×fFSC=AFSC

Proof

Step Hyp Ref Expression
1 dvcmul.s φS
2 dvcmul.f φF:X
3 dvcmul.a φA
4 dvcmul.x φXS
5 dvcmul.c φCdomFS
6 fconst6g AS×A:S
7 3 6 syl φS×A:S
8 ssidd φSS
9 recnprss SS
10 1 9 syl φS
11 10 2 4 dvbss φdomFSX
12 11 5 sseldd φCX
13 4 12 sseldd φCS
14 fconst6g A×A:
15 3 14 syl φ×A:
16 ssidd φ
17 dvconst AD×A=×0
18 3 17 syl φD×A=×0
19 18 dmeqd φdom×A=dom×0
20 c0ex 0V
21 20 fconst ×0:0
22 21 fdmi dom×0=
23 19 22 eqtrdi φdom×A=
24 10 23 sseqtrrd φSdom×A
25 dvres3 S×A:Sdom×ASD×AS=×AS
26 1 15 16 24 25 syl22anc φSD×AS=×AS
27 xpssres S×AS=S×A
28 10 27 syl φ×AS=S×A
29 28 oveq2d φSD×AS=SDS×A
30 18 reseq1d φ×AS=×0S
31 xpssres S×0S=S×0
32 10 31 syl φ×0S=S×0
33 30 32 eqtrd φ×AS=S×0
34 26 29 33 3eqtr3d φSDS×A=S×0
35 20 fconst2 S×AS:S0SDS×A=S×0
36 34 35 sylibr φS×AS:S0
37 36 fdmd φdomS×AS=S
38 13 37 eleqtrrd φCdomS×AS
39 7 8 2 4 1 38 5 dvmul φS×A×fFSC=S×ASCFC+FSCS×AC
40 34 fveq1d φS×ASC=S×0C
41 20 fvconst2 CSS×0C=0
42 13 41 syl φS×0C=0
43 40 42 eqtrd φS×ASC=0
44 43 oveq1d φS×ASCFC=0FC
45 2 12 ffvelcdmd φFC
46 45 mul02d φ0FC=0
47 44 46 eqtrd φS×ASCFC=0
48 fvconst2g ACSS×AC=A
49 3 13 48 syl2anc φS×AC=A
50 49 oveq2d φFSCS×AC=FSCA
51 dvfg SFS:domFS
52 1 51 syl φFS:domFS
53 52 5 ffvelcdmd φFSC
54 53 3 mulcomd φFSCA=AFSC
55 50 54 eqtrd φFSCS×AC=AFSC
56 47 55 oveq12d φS×ASCFC+FSCS×AC=0+AFSC
57 3 53 mulcld φAFSC
58 57 addlidd φ0+AFSC=AFSC
59 39 56 58 3eqtrd φS×A×fFSC=AFSC