| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dvcmul.s |
|
| 2 |
|
dvcmul.f |
|
| 3 |
|
dvcmul.a |
|
| 4 |
|
dvcmul.x |
|
| 5 |
|
dvcmul.c |
|
| 6 |
|
fconst6g |
|
| 7 |
3 6
|
syl |
|
| 8 |
|
ssidd |
|
| 9 |
|
recnprss |
|
| 10 |
1 9
|
syl |
|
| 11 |
10 2 4
|
dvbss |
|
| 12 |
11 5
|
sseldd |
|
| 13 |
4 12
|
sseldd |
|
| 14 |
|
fconst6g |
|
| 15 |
3 14
|
syl |
|
| 16 |
|
ssidd |
|
| 17 |
|
dvconst |
|
| 18 |
3 17
|
syl |
|
| 19 |
18
|
dmeqd |
|
| 20 |
|
c0ex |
|
| 21 |
20
|
fconst |
|
| 22 |
21
|
fdmi |
|
| 23 |
19 22
|
eqtrdi |
|
| 24 |
10 23
|
sseqtrrd |
|
| 25 |
|
dvres3 |
|
| 26 |
1 15 16 24 25
|
syl22anc |
|
| 27 |
|
xpssres |
|
| 28 |
10 27
|
syl |
|
| 29 |
28
|
oveq2d |
|
| 30 |
18
|
reseq1d |
|
| 31 |
|
xpssres |
|
| 32 |
10 31
|
syl |
|
| 33 |
30 32
|
eqtrd |
|
| 34 |
26 29 33
|
3eqtr3d |
|
| 35 |
20
|
fconst2 |
|
| 36 |
34 35
|
sylibr |
|
| 37 |
36
|
fdmd |
|
| 38 |
13 37
|
eleqtrrd |
|
| 39 |
7 8 2 4 1 38 5
|
dvmul |
|
| 40 |
34
|
fveq1d |
|
| 41 |
20
|
fvconst2 |
|
| 42 |
13 41
|
syl |
|
| 43 |
40 42
|
eqtrd |
|
| 44 |
43
|
oveq1d |
|
| 45 |
2 12
|
ffvelcdmd |
|
| 46 |
45
|
mul02d |
|
| 47 |
44 46
|
eqtrd |
|
| 48 |
|
fvconst2g |
|
| 49 |
3 13 48
|
syl2anc |
|
| 50 |
49
|
oveq2d |
|
| 51 |
|
dvfg |
|
| 52 |
1 51
|
syl |
|
| 53 |
52 5
|
ffvelcdmd |
|
| 54 |
53 3
|
mulcomd |
|
| 55 |
50 54
|
eqtrd |
|
| 56 |
47 55
|
oveq12d |
|
| 57 |
3 53
|
mulcld |
|
| 58 |
57
|
addlidd |
|
| 59 |
39 56 58
|
3eqtrd |
|