Description: Lemma for dvid and dvconst . (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dvidlem.1 | |
|
dvidlem.2 | |
||
dvidlem.3 | |
||
Assertion | dvidlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvidlem.1 | |
|
2 | dvidlem.2 | |
|
3 | dvidlem.3 | |
|
4 | dvfcn | |
|
5 | ssidd | |
|
6 | 5 1 5 | dvbss | |
7 | reldv | |
|
8 | simpr | |
|
9 | eqid | |
|
10 | 9 | cnfldtop | |
11 | unicntop | |
|
12 | 11 | ntrtop | |
13 | 10 12 | ax-mp | |
14 | 8 13 | eleqtrrdi | |
15 | limcresi | |
|
16 | ssidd | |
|
17 | cncfmptc | |
|
18 | 3 16 16 17 | mp3an2i | |
19 | eqidd | |
|
20 | 18 8 19 | cnmptlimc | |
21 | 15 20 | sselid | |
22 | eldifsn | |
|
23 | 2 | 3exp2 | |
24 | 23 | imp43 | |
25 | 22 24 | sylan2b | |
26 | 25 | mpteq2dva | |
27 | difss | |
|
28 | resmpt | |
|
29 | 27 28 | ax-mp | |
30 | 26 29 | eqtr4di | |
31 | 30 | oveq1d | |
32 | 21 31 | eleqtrrd | |
33 | 9 | cnfldtopon | |
34 | 33 | toponrestid | |
35 | eqid | |
|
36 | 1 | adantr | |
37 | 34 9 35 16 36 16 | eldv | |
38 | 14 32 37 | mpbir2and | |
39 | releldm | |
|
40 | 7 38 39 | sylancr | |
41 | 6 40 | eqelssd | |
42 | 41 | feq2d | |
43 | 4 42 | mpbii | |
44 | 43 | ffnd | |
45 | fnconstg | |
|
46 | 3 45 | mp1i | |
47 | ffun | |
|
48 | 4 47 | mp1i | |
49 | funbrfvb | |
|
50 | 48 40 49 | syl2anc | |
51 | 38 50 | mpbird | |
52 | 3 | a1i | |
53 | fvconst2g | |
|
54 | 52 53 | sylan | |
55 | 51 54 | eqtr4d | |
56 | 44 46 55 | eqfnfvd | |