Metamath Proof Explorer


Theorem dvidlem

Description: Lemma for dvid and dvconst . (Contributed by Mario Carneiro, 8-Aug-2014) (Revised by Mario Carneiro, 9-Feb-2015)

Ref Expression
Hypotheses dvidlem.1 φF:
dvidlem.2 φxzzxFzFxzx=B
dvidlem.3 B
Assertion dvidlem φDF=×B

Proof

Step Hyp Ref Expression
1 dvidlem.1 φF:
2 dvidlem.2 φxzzxFzFxzx=B
3 dvidlem.3 B
4 dvfcn F:domF
5 ssidd φ
6 5 1 5 dvbss φdomF
7 reldv RelF
8 simpr φxx
9 eqid TopOpenfld=TopOpenfld
10 9 cnfldtop TopOpenfldTop
11 unicntop =TopOpenfld
12 11 ntrtop TopOpenfldTopintTopOpenfld=
13 10 12 ax-mp intTopOpenfld=
14 8 13 eleqtrrdi φxxintTopOpenfld
15 limcresi zBlimxzBxlimx
16 ssidd φx
17 cncfmptc BzB:cn
18 3 16 16 17 mp3an2i φxzB:cn
19 eqidd z=xB=B
20 18 8 19 cnmptlimc φxBzBlimx
21 15 20 sselid φxBzBxlimx
22 eldifsn zxzzx
23 2 3exp2 φxzzxFzFxzx=B
24 23 imp43 φxzzxFzFxzx=B
25 22 24 sylan2b φxzxFzFxzx=B
26 25 mpteq2dva φxzxFzFxzx=zxB
27 difss x
28 resmpt xzBx=zxB
29 27 28 ax-mp zBx=zxB
30 26 29 eqtr4di φxzxFzFxzx=zBx
31 30 oveq1d φxzxFzFxzxlimx=zBxlimx
32 21 31 eleqtrrd φxBzxFzFxzxlimx
33 9 cnfldtopon TopOpenfldTopOn
34 33 toponrestid TopOpenfld=TopOpenfld𝑡
35 eqid zxFzFxzx=zxFzFxzx
36 1 adantr φxF:
37 34 9 35 16 36 16 eldv φxxFBxintTopOpenfldBzxFzFxzxlimx
38 14 32 37 mpbir2and φxxFB
39 releldm RelFxFBxdomF
40 7 38 39 sylancr φxxdomF
41 6 40 eqelssd φdomF=
42 41 feq2d φF:domFF:
43 4 42 mpbii φF:
44 43 ffnd φFFn
45 fnconstg B×BFn
46 3 45 mp1i φ×BFn
47 ffun F:domFFunF
48 4 47 mp1i φxFunF
49 funbrfvb FunFxdomFFx=BxFB
50 48 40 49 syl2anc φxFx=BxFB
51 38 50 mpbird φxFx=B
52 3 a1i φB
53 fvconst2g Bx×Bx=B
54 52 53 sylan φx×Bx=B
55 51 54 eqtr4d φxFx=×Bx
56 44 46 55 eqfnfvd φDF=×B