Metamath Proof Explorer


Theorem dvntaylp

Description: The M -th derivative of the Taylor polynomial is the Taylor polynomial of the M -th derivative of the function. (Contributed by Mario Carneiro, 1-Jan-2017)

Ref Expression
Hypotheses dvntaylp.s φS
dvntaylp.f φF:A
dvntaylp.a φAS
dvntaylp.m φM0
dvntaylp.n φN0
dvntaylp.b φBdomSDnFN+M
Assertion dvntaylp φDnN+MSTaylFBM=NSTaylSDnFMB

Proof

Step Hyp Ref Expression
1 dvntaylp.s φS
2 dvntaylp.f φF:A
3 dvntaylp.a φAS
4 dvntaylp.m φM0
5 dvntaylp.n φN0
6 dvntaylp.b φBdomSDnFN+M
7 nn0uz 0=0
8 4 7 eleqtrdi φM0
9 eluzfz2b M0M0M
10 8 9 sylib φM0M
11 fveq2 m=0DnN+MSTaylFBm=DnN+MSTaylFB0
12 fveq2 m=0SDnFm=SDnF0
13 12 oveq2d m=0STaylSDnFm=STaylSDnF0
14 oveq2 m=0Mm=M0
15 14 oveq2d m=0N+M-m=N+M-0
16 eqidd m=0B=B
17 13 15 16 oveq123d m=0N+M-mSTaylSDnFmB=N+M-0STaylSDnF0B
18 11 17 eqeq12d m=0DnN+MSTaylFBm=N+M-mSTaylSDnFmBDnN+MSTaylFB0=N+M-0STaylSDnF0B
19 18 imbi2d m=0φDnN+MSTaylFBm=N+M-mSTaylSDnFmBφDnN+MSTaylFB0=N+M-0STaylSDnF0B
20 fveq2 m=nDnN+MSTaylFBm=DnN+MSTaylFBn
21 fveq2 m=nSDnFm=SDnFn
22 21 oveq2d m=nSTaylSDnFm=STaylSDnFn
23 oveq2 m=nMm=Mn
24 23 oveq2d m=nN+M-m=N+M-n
25 eqidd m=nB=B
26 22 24 25 oveq123d m=nN+M-mSTaylSDnFmB=N+M-nSTaylSDnFnB
27 20 26 eqeq12d m=nDnN+MSTaylFBm=N+M-mSTaylSDnFmBDnN+MSTaylFBn=N+M-nSTaylSDnFnB
28 27 imbi2d m=nφDnN+MSTaylFBm=N+M-mSTaylSDnFmBφDnN+MSTaylFBn=N+M-nSTaylSDnFnB
29 fveq2 m=n+1DnN+MSTaylFBm=DnN+MSTaylFBn+1
30 fveq2 m=n+1SDnFm=SDnFn+1
31 30 oveq2d m=n+1STaylSDnFm=STaylSDnFn+1
32 oveq2 m=n+1Mm=Mn+1
33 32 oveq2d m=n+1N+M-m=N+M-n+1
34 eqidd m=n+1B=B
35 31 33 34 oveq123d m=n+1N+M-mSTaylSDnFmB=N+M-n+1STaylSDnFn+1B
36 29 35 eqeq12d m=n+1DnN+MSTaylFBm=N+M-mSTaylSDnFmBDnN+MSTaylFBn+1=N+M-n+1STaylSDnFn+1B
37 36 imbi2d m=n+1φDnN+MSTaylFBm=N+M-mSTaylSDnFmBφDnN+MSTaylFBn+1=N+M-n+1STaylSDnFn+1B
38 fveq2 m=MDnN+MSTaylFBm=DnN+MSTaylFBM
39 fveq2 m=MSDnFm=SDnFM
40 39 oveq2d m=MSTaylSDnFm=STaylSDnFM
41 oveq2 m=MMm=MM
42 41 oveq2d m=MN+M-m=N+M-M
43 eqidd m=MB=B
44 40 42 43 oveq123d m=MN+M-mSTaylSDnFmB=N+M-MSTaylSDnFMB
45 38 44 eqeq12d m=MDnN+MSTaylFBm=N+M-mSTaylSDnFmBDnN+MSTaylFBM=N+M-MSTaylSDnFMB
46 45 imbi2d m=MφDnN+MSTaylFBm=N+M-mSTaylSDnFmBφDnN+MSTaylFBM=N+M-MSTaylSDnFMB
47 ssidd φ
48 mapsspm 𝑝𝑚
49 5 4 nn0addcld φN+M0
50 eqid N+MSTaylFB=N+MSTaylFB
51 1 2 3 49 6 50 taylpf φN+MSTaylFB:
52 cnex V
53 52 52 elmap N+MSTaylFBN+MSTaylFB:
54 51 53 sylibr φN+MSTaylFB
55 48 54 sselid φN+MSTaylFB𝑝𝑚
56 dvn0 N+MSTaylFB𝑝𝑚DnN+MSTaylFB0=N+MSTaylFB
57 47 55 56 syl2anc φDnN+MSTaylFB0=N+MSTaylFB
58 recnprss SS
59 1 58 syl φS
60 52 a1i φV
61 elpm2r VSF:AASF𝑝𝑚S
62 60 1 2 3 61 syl22anc φF𝑝𝑚S
63 dvn0 SF𝑝𝑚SSDnF0=F
64 59 62 63 syl2anc φSDnF0=F
65 64 oveq2d φSTaylSDnF0=STaylF
66 4 nn0cnd φM
67 66 subid1d φM0=M
68 67 oveq2d φN+M-0=N+M
69 eqidd φB=B
70 65 68 69 oveq123d φN+M-0STaylSDnF0B=N+MSTaylFB
71 57 70 eqtr4d φDnN+MSTaylFB0=N+M-0STaylSDnF0B
72 71 a1i M0φDnN+MSTaylFB0=N+M-0STaylSDnF0B
73 oveq2 DnN+MSTaylFBn=N+M-nSTaylSDnFnBDDnN+MSTaylFBn=DN+M-nSTaylSDnFnB
74 ssidd φn0..^M
75 55 adantr φn0..^MN+MSTaylFB𝑝𝑚
76 elfzouz n0..^Mn0
77 76 adantl φn0..^Mn0
78 77 7 eleqtrrdi φn0..^Mn0
79 dvnp1 N+MSTaylFB𝑝𝑚n0DnN+MSTaylFBn+1=DDnN+MSTaylFBn
80 74 75 78 79 syl3anc φn0..^MDnN+MSTaylFBn+1=DDnN+MSTaylFBn
81 1 adantr φn0..^MS
82 62 adantr φn0..^MF𝑝𝑚S
83 dvnf SF𝑝𝑚Sn0SDnFn:domSDnFn
84 81 82 78 83 syl3anc φn0..^MSDnFn:domSDnFn
85 dvnbss SF𝑝𝑚Sn0domSDnFndomF
86 81 82 78 85 syl3anc φn0..^MdomSDnFndomF
87 2 fdmd φdomF=A
88 87 adantr φn0..^MdomF=A
89 86 88 sseqtrd φn0..^MdomSDnFnA
90 3 adantr φn0..^MAS
91 89 90 sstrd φn0..^MdomSDnFnS
92 5 adantr φn0..^MN0
93 fzofzp1 n0..^Mn+10M
94 93 adantl φn0..^Mn+10M
95 fznn0sub n+10MMn+10
96 94 95 syl φn0..^MMn+10
97 92 96 nn0addcld φn0..^MN+M-n+10
98 6 adantr φn0..^MBdomSDnFN+M
99 elfzofz n0..^Mn0M
100 99 adantl φn0..^Mn0M
101 fznn0sub n0MMn0
102 100 101 syl φn0..^MMn0
103 92 102 nn0addcld φn0..^MN+M-n0
104 dvnadd SF𝑝𝑚Sn0N+M-n0SDnSDnFnN+M-n=SDnFn+N+Mn
105 81 82 78 103 104 syl22anc φn0..^MSDnSDnFnN+M-n=SDnFn+N+Mn
106 5 nn0cnd φN
107 106 adantr φn0..^MN
108 96 nn0cnd φn0..^MMn+1
109 1cnd φn0..^M1
110 107 108 109 addassd φn0..^MN+Mn+1+1=N+Mn+1+1
111 66 adantr φn0..^MM
112 78 nn0cnd φn0..^Mn
113 111 112 109 nppcan2d φn0..^MM-n+1+1=Mn
114 113 oveq2d φn0..^MN+Mn+1+1=N+M-n
115 110 114 eqtrd φn0..^MN+Mn+1+1=N+M-n
116 115 fveq2d φn0..^MSDnSDnFnN+Mn+1+1=SDnSDnFnN+M-n
117 112 111 pncan3d φn0..^Mn+M-n=M
118 117 oveq2d φn0..^MN+n+Mn=N+M
119 111 112 subcld φn0..^MMn
120 107 112 119 add12d φn0..^MN+n+Mn=n+N+Mn
121 118 120 eqtr3d φn0..^MN+M=n+N+Mn
122 121 fveq2d φn0..^MSDnFN+M=SDnFn+N+Mn
123 105 116 122 3eqtr4d φn0..^MSDnSDnFnN+Mn+1+1=SDnFN+M
124 123 dmeqd φn0..^MdomSDnSDnFnN+Mn+1+1=domSDnFN+M
125 98 124 eleqtrrd φn0..^MBdomSDnSDnFnN+Mn+1+1
126 81 84 91 97 125 dvtaylp φn0..^MDN+Mn+1+1STaylSDnFnB=N+M-n+1STaylSDnFnSB
127 115 oveq1d φn0..^MN+Mn+1+1STaylSDnFnB=N+M-nSTaylSDnFnB
128 127 oveq2d φn0..^MDN+Mn+1+1STaylSDnFnB=DN+M-nSTaylSDnFnB
129 59 adantr φn0..^MS
130 dvnp1 SF𝑝𝑚Sn0SDnFn+1=SDSDnFn
131 129 82 78 130 syl3anc φn0..^MSDnFn+1=SDSDnFn
132 131 oveq2d φn0..^MSTaylSDnFn+1=STaylSDnFnS
133 132 eqcomd φn0..^MSTaylSDnFnS=STaylSDnFn+1
134 133 oveqd φn0..^MN+M-n+1STaylSDnFnSB=N+M-n+1STaylSDnFn+1B
135 126 128 134 3eqtr3rd φn0..^MN+M-n+1STaylSDnFn+1B=DN+M-nSTaylSDnFnB
136 80 135 eqeq12d φn0..^MDnN+MSTaylFBn+1=N+M-n+1STaylSDnFn+1BDDnN+MSTaylFBn=DN+M-nSTaylSDnFnB
137 73 136 imbitrrid φn0..^MDnN+MSTaylFBn=N+M-nSTaylSDnFnBDnN+MSTaylFBn+1=N+M-n+1STaylSDnFn+1B
138 137 expcom n0..^MφDnN+MSTaylFBn=N+M-nSTaylSDnFnBDnN+MSTaylFBn+1=N+M-n+1STaylSDnFn+1B
139 138 a2d n0..^MφDnN+MSTaylFBn=N+M-nSTaylSDnFnBφDnN+MSTaylFBn+1=N+M-n+1STaylSDnFn+1B
140 19 28 37 46 72 139 fzind2 M0MφDnN+MSTaylFBM=N+M-MSTaylSDnFMB
141 10 140 mpcom φDnN+MSTaylFBM=N+M-MSTaylSDnFMB
142 66 subidd φMM=0
143 142 oveq2d φN+M-M=N+0
144 106 addridd φN+0=N
145 143 144 eqtrd φN+M-M=N
146 145 oveq1d φN+M-MSTaylSDnFMB=NSTaylSDnFMB
147 141 146 eqtrd φDnN+MSTaylFBM=NSTaylSDnFMB