Description: Every open set of ( RR X. RR ) is a union of closed-below open-above dyadic rational rectangular subsets of ( RR X. RR ) . This union must be a countable union by dya2iocct . (Contributed by Thierry Arnoux, 18-Sep-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sxbrsiga.0 | |
|
dya2ioc.1 | |
||
dya2ioc.2 | |
||
Assertion | dya2iocuni | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sxbrsiga.0 | |
|
2 | dya2ioc.1 | |
|
3 | dya2ioc.2 | |
|
4 | ssrab2 | |
|
5 | 1 2 3 | dya2iocrfn | |
6 | zex | |
|
7 | 6 6 | mpoex | |
8 | 2 7 | eqeltri | |
9 | 8 | rnex | |
10 | 9 9 | xpex | |
11 | fnex | |
|
12 | 5 10 11 | mp2an | |
13 | 12 | rnex | |
14 | 13 | elpw2 | |
15 | 4 14 | mpbir | |
16 | 15 | a1i | |
17 | rex0 | |
|
18 | rexeq | |
|
19 | 17 18 | mtbiri | |
20 | 19 | ralrimivw | |
21 | rabeq0 | |
|
22 | 20 21 | sylibr | |
23 | 22 | unieqd | |
24 | uni0 | |
|
25 | 23 24 | eqtrdi | |
26 | 0ss | |
|
27 | 25 26 | eqsstrdi | |
28 | elequ2 | |
|
29 | sseq1 | |
|
30 | 28 29 | anbi12d | |
31 | 30 | rexbidv | |
32 | 31 | elrab | |
33 | simpr | |
|
34 | 33 | reximi | |
35 | r19.9rzv | |
|
36 | 34 35 | imbitrrid | |
37 | 36 | adantld | |
38 | 32 37 | biimtrid | |
39 | 38 | ralrimiv | |
40 | unissb | |
|
41 | 39 40 | sylibr | |
42 | 27 41 | pm2.61ine | |
43 | 42 | a1i | |
44 | 1 2 3 | dya2iocnei | |
45 | simpl | |
|
46 | ssel2 | |
|
47 | 46 | ancoms | |
48 | 47 | adantl | |
49 | simpr | |
|
50 | elequ1 | |
|
51 | 50 | anbi1d | |
52 | 51 | rspcev | |
53 | 48 49 52 | syl2anc | |
54 | 45 53 | jca | |
55 | 54 32 | sylibr | |
56 | simprl | |
|
57 | 55 56 | jca | |
58 | 57 | reximi2 | |
59 | 44 58 | syl | |
60 | eluni2 | |
|
61 | 59 60 | sylibr | |
62 | 43 61 | eqelssd | |
63 | unieq | |
|
64 | 63 | eqeq1d | |
65 | 64 | rspcev | |
66 | 16 62 65 | syl2anc | |