Metamath Proof Explorer


Theorem dya2iocuni

Description: Every open set of ( RR X. RR ) is a union of closed-below open-above dyadic rational rectangular subsets of ( RR X. RR ) . This union must be a countable union by dya2iocct . (Contributed by Thierry Arnoux, 18-Sep-2017)

Ref Expression
Hypotheses sxbrsiga.0 J=topGenran.
dya2ioc.1 I=x,nx2nx+12n
dya2ioc.2 R=uranI,vranIu×v
Assertion dya2iocuni AJ×tJc𝒫ranRc=A

Proof

Step Hyp Ref Expression
1 sxbrsiga.0 J=topGenran.
2 dya2ioc.1 I=x,nx2nx+12n
3 dya2ioc.2 R=uranI,vranIu×v
4 ssrab2 branR|zAzbbAranR
5 1 2 3 dya2iocrfn RFnranI×ranI
6 zex V
7 6 6 mpoex x,nx2nx+12nV
8 2 7 eqeltri IV
9 8 rnex ranIV
10 9 9 xpex ranI×ranIV
11 fnex RFnranI×ranIranI×ranIVRV
12 5 10 11 mp2an RV
13 12 rnex ranRV
14 13 elpw2 branR|zAzbbA𝒫ranRbranR|zAzbbAranR
15 4 14 mpbir branR|zAzbbA𝒫ranR
16 15 a1i AJ×tJbranR|zAzbbA𝒫ranR
17 rex0 ¬zzbbA
18 rexeq A=zAzbbAzzbbA
19 17 18 mtbiri A=¬zAzbbA
20 19 ralrimivw A=branR¬zAzbbA
21 rabeq0 branR|zAzbbA=branR¬zAzbbA
22 20 21 sylibr A=branR|zAzbbA=
23 22 unieqd A=branR|zAzbbA=
24 uni0 =
25 23 24 eqtrdi A=branR|zAzbbA=
26 0ss A
27 25 26 eqsstrdi A=branR|zAzbbAA
28 elequ2 b=pzbzp
29 sseq1 b=pbApA
30 28 29 anbi12d b=pzbbAzppA
31 30 rexbidv b=pzAzbbAzAzppA
32 31 elrab pbranR|zAzbbApranRzAzppA
33 simpr zppApA
34 33 reximi zAzppAzApA
35 r19.9rzv ApAzApA
36 34 35 imbitrrid AzAzppApA
37 36 adantld ApranRzAzppApA
38 32 37 biimtrid ApbranR|zAzbbApA
39 38 ralrimiv ApbranR|zAzbbApA
40 unissb branR|zAzbbAApbranR|zAzbbApA
41 39 40 sylibr AbranR|zAzbbAA
42 27 41 pm2.61ine branR|zAzbbAA
43 42 a1i AJ×tJbranR|zAzbbAA
44 1 2 3 dya2iocnei AJ×tJmApranRmppA
45 simpl pranRmppApranR
46 ssel2 pAmpmA
47 46 ancoms mppAmA
48 47 adantl pranRmppAmA
49 simpr pranRmppAmppA
50 elequ1 z=mzpmp
51 50 anbi1d z=mzppAmppA
52 51 rspcev mAmppAzAzppA
53 48 49 52 syl2anc pranRmppAzAzppA
54 45 53 jca pranRmppApranRzAzppA
55 54 32 sylibr pranRmppApbranR|zAzbbA
56 simprl pranRmppAmp
57 55 56 jca pranRmppApbranR|zAzbbAmp
58 57 reximi2 pranRmppApbranR|zAzbbAmp
59 44 58 syl AJ×tJmApbranR|zAzbbAmp
60 eluni2 mbranR|zAzbbApbranR|zAzbbAmp
61 59 60 sylibr AJ×tJmAmbranR|zAzbbA
62 43 61 eqelssd AJ×tJbranR|zAzbbA=A
63 unieq c=branR|zAzbbAc=branR|zAzbbA
64 63 eqeq1d c=branR|zAzbbAc=AbranR|zAzbbA=A
65 64 rspcev branR|zAzbbA𝒫ranRbranR|zAzbbA=Ac𝒫ranRc=A
66 16 62 65 syl2anc AJ×tJc𝒫ranRc=A