Metamath Proof Explorer


Theorem efgsrel

Description: The start and end of any extension sequence are related (i.e. evaluate to the same element of the quotient group to be created). (Contributed by Mario Carneiro, 1-Oct-2015)

Ref Expression
Hypotheses efgval.w W=IWordI×2𝑜
efgval.r ˙=~FGI
efgval2.m M=yI,z2𝑜y1𝑜z
efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
efgred.d D=WxWranTx
efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
Assertion efgsrel FdomSF0˙SF

Proof

Step Hyp Ref Expression
1 efgval.w W=IWordI×2𝑜
2 efgval.r ˙=~FGI
3 efgval2.m M=yI,z2𝑜y1𝑜z
4 efgval2.t T=vWn0v,wI×2𝑜vsplicenn⟨“wMw”⟩
5 efgred.d D=WxWranTx
6 efgred.s S=mtWordW|t0Dk1..^ttkranTtk1mm1
7 1 2 3 4 5 6 efgsdm FdomSFWordWF0Da1..^FFaranTFa1
8 7 simp1bi FdomSFWordW
9 eldifsn FWordWFWordWF
10 lennncl FWordWFF
11 9 10 sylbi FWordWF
12 fzo0end FF10..^F
13 8 11 12 3syl FdomSF10..^F
14 nnm1nn0 FF10
15 8 11 14 3syl FdomSF10
16 eleq1 a=0a0..^F00..^F
17 fveq2 a=0Fa=F0
18 17 breq2d a=0F0˙FaF0˙F0
19 16 18 imbi12d a=0a0..^FF0˙Fa00..^FF0˙F0
20 19 imbi2d a=0FdomSa0..^FF0˙FaFdomS00..^FF0˙F0
21 eleq1 a=ia0..^Fi0..^F
22 fveq2 a=iFa=Fi
23 22 breq2d a=iF0˙FaF0˙Fi
24 21 23 imbi12d a=ia0..^FF0˙Fai0..^FF0˙Fi
25 24 imbi2d a=iFdomSa0..^FF0˙FaFdomSi0..^FF0˙Fi
26 eleq1 a=i+1a0..^Fi+10..^F
27 fveq2 a=i+1Fa=Fi+1
28 27 breq2d a=i+1F0˙FaF0˙Fi+1
29 26 28 imbi12d a=i+1a0..^FF0˙Fai+10..^FF0˙Fi+1
30 29 imbi2d a=i+1FdomSa0..^FF0˙FaFdomSi+10..^FF0˙Fi+1
31 eleq1 a=F1a0..^FF10..^F
32 fveq2 a=F1Fa=FF1
33 32 breq2d a=F1F0˙FaF0˙FF1
34 31 33 imbi12d a=F1a0..^FF0˙FaF10..^FF0˙FF1
35 34 imbi2d a=F1FdomSa0..^FF0˙FaFdomSF10..^FF0˙FF1
36 1 2 efger ˙ErW
37 36 a1i FdomS00..^F˙ErW
38 eldifi FWordWFWordW
39 wrdf FWordWF:0..^FW
40 8 38 39 3syl FdomSF:0..^FW
41 40 ffvelcdmda FdomS00..^FF0W
42 37 41 erref FdomS00..^FF0˙F0
43 42 ex FdomS00..^FF0˙F0
44 elnn0uz i0i0
45 peano2fzor i0i+10..^Fi0..^F
46 44 45 sylanb i0i+10..^Fi0..^F
47 46 3adant1 FdomSi0i+10..^Fi0..^F
48 47 3expia FdomSi0i+10..^Fi0..^F
49 48 imim1d FdomSi0i0..^FF0˙Fii+10..^FF0˙Fi
50 40 3ad2ant1 FdomSi0i+10..^FF:0..^FW
51 50 47 ffvelcdmd FdomSi0i+10..^FFiW
52 fvoveq1 a=i+1Fa1=Fi+1-1
53 52 fveq2d a=i+1TFa1=TFi+1-1
54 53 rneqd a=i+1ranTFa1=ranTFi+1-1
55 27 54 eleq12d a=i+1FaranTFa1Fi+1ranTFi+1-1
56 7 simp3bi FdomSa1..^FFaranTFa1
57 56 3ad2ant1 FdomSi0i+10..^Fa1..^FFaranTFa1
58 nn0p1nn i0i+1
59 58 3ad2ant2 FdomSi0i+10..^Fi+1
60 nnuz =1
61 59 60 eleqtrdi FdomSi0i+10..^Fi+11
62 elfzolt2b i+10..^Fi+1i+1..^F
63 62 3ad2ant3 FdomSi0i+10..^Fi+1i+1..^F
64 elfzo3 i+11..^Fi+11i+1i+1..^F
65 61 63 64 sylanbrc FdomSi0i+10..^Fi+11..^F
66 55 57 65 rspcdva FdomSi0i+10..^FFi+1ranTFi+1-1
67 nn0cn i0i
68 67 3ad2ant2 FdomSi0i+10..^Fi
69 ax-1cn 1
70 pncan i1i+1-1=i
71 68 69 70 sylancl FdomSi0i+10..^Fi+1-1=i
72 71 fveq2d FdomSi0i+10..^FFi+1-1=Fi
73 72 fveq2d FdomSi0i+10..^FTFi+1-1=TFi
74 73 rneqd FdomSi0i+10..^FranTFi+1-1=ranTFi
75 66 74 eleqtrd FdomSi0i+10..^FFi+1ranTFi
76 1 2 3 4 efgi2 FiWFi+1ranTFiFi˙Fi+1
77 51 75 76 syl2anc FdomSi0i+10..^FFi˙Fi+1
78 36 a1i FdomSi0i+10..^F˙ErW
79 78 ertr FdomSi0i+10..^FF0˙FiFi˙Fi+1F0˙Fi+1
80 77 79 mpan2d FdomSi0i+10..^FF0˙FiF0˙Fi+1
81 80 3expia FdomSi0i+10..^FF0˙FiF0˙Fi+1
82 81 a2d FdomSi0i+10..^FF0˙Fii+10..^FF0˙Fi+1
83 49 82 syld FdomSi0i0..^FF0˙Fii+10..^FF0˙Fi+1
84 83 expcom i0FdomSi0..^FF0˙Fii+10..^FF0˙Fi+1
85 84 a2d i0FdomSi0..^FF0˙FiFdomSi+10..^FF0˙Fi+1
86 20 25 30 35 43 85 nn0ind F10FdomSF10..^FF0˙FF1
87 15 86 mpcom FdomSF10..^FF0˙FF1
88 13 87 mpd FdomSF0˙FF1
89 1 2 3 4 5 6 efgsval FdomSSF=FF1
90 88 89 breqtrrd FdomSF0˙SF