Metamath Proof Explorer


Theorem eldioph2lem2

Description: Lemma for eldioph2 . Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014)

Ref Expression
Assertion eldioph2lem2 N 0 ¬ S Fin 1 N S A N c c : 1 A 1-1 S c 1 N = I 1 N

Proof

Step Hyp Ref Expression
1 simplr N 0 ¬ S Fin 1 N S A N ¬ S Fin
2 fzfi 1 N Fin
3 difinf ¬ S Fin 1 N Fin ¬ S 1 N Fin
4 1 2 3 sylancl N 0 ¬ S Fin 1 N S A N ¬ S 1 N Fin
5 fzfi 1 A Fin
6 diffi 1 A Fin 1 A 1 N Fin
7 5 6 ax-mp 1 A 1 N Fin
8 isinffi ¬ S 1 N Fin 1 A 1 N Fin a a : 1 A 1 N 1-1 S 1 N
9 4 7 8 sylancl N 0 ¬ S Fin 1 N S A N a a : 1 A 1 N 1-1 S 1 N
10 f1f1orn a : 1 A 1 N 1-1 S 1 N a : 1 A 1 N 1-1 onto ran a
11 10 adantl N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N a : 1 A 1 N 1-1 onto ran a
12 f1oi I 1 N : 1 N 1-1 onto 1 N
13 12 a1i N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N I 1 N : 1 N 1-1 onto 1 N
14 disjdifr 1 A 1 N 1 N =
15 14 a1i N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N 1 A 1 N 1 N =
16 f1f a : 1 A 1 N 1-1 S 1 N a : 1 A 1 N S 1 N
17 16 frnd a : 1 A 1 N 1-1 S 1 N ran a S 1 N
18 17 adantl N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N ran a S 1 N
19 18 ssrind N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N ran a 1 N S 1 N 1 N
20 disjdifr S 1 N 1 N =
21 19 20 sseqtrdi N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N ran a 1 N
22 ss0 ran a 1 N ran a 1 N =
23 21 22 syl N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N ran a 1 N =
24 f1oun a : 1 A 1 N 1-1 onto ran a I 1 N : 1 N 1-1 onto 1 N 1 A 1 N 1 N = ran a 1 N = a I 1 N : 1 A 1 N 1 N 1-1 onto ran a 1 N
25 11 13 15 23 24 syl22anc N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N a I 1 N : 1 A 1 N 1 N 1-1 onto ran a 1 N
26 f1of1 a I 1 N : 1 A 1 N 1 N 1-1 onto ran a 1 N a I 1 N : 1 A 1 N 1 N 1-1 ran a 1 N
27 25 26 syl N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N a I 1 N : 1 A 1 N 1 N 1-1 ran a 1 N
28 uncom 1 A 1 N 1 N = 1 N 1 A 1 N
29 simplrr N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N A N
30 fzss2 A N 1 N 1 A
31 29 30 syl N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N 1 N 1 A
32 undif 1 N 1 A 1 N 1 A 1 N = 1 A
33 31 32 sylib N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N 1 N 1 A 1 N = 1 A
34 28 33 syl5eq N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N 1 A 1 N 1 N = 1 A
35 f1eq2 1 A 1 N 1 N = 1 A a I 1 N : 1 A 1 N 1 N 1-1 ran a 1 N a I 1 N : 1 A 1-1 ran a 1 N
36 34 35 syl N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N a I 1 N : 1 A 1 N 1 N 1-1 ran a 1 N a I 1 N : 1 A 1-1 ran a 1 N
37 27 36 mpbid N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N a I 1 N : 1 A 1-1 ran a 1 N
38 17 difss2d a : 1 A 1 N 1-1 S 1 N ran a S
39 38 adantl N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N ran a S
40 simplrl N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N 1 N S
41 39 40 unssd N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N ran a 1 N S
42 f1ss a I 1 N : 1 A 1-1 ran a 1 N ran a 1 N S a I 1 N : 1 A 1-1 S
43 37 41 42 syl2anc N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N a I 1 N : 1 A 1-1 S
44 resundir a I 1 N 1 N = a 1 N I 1 N 1 N
45 dmres dom a 1 N = 1 N dom a
46 incom 1 N dom a = dom a 1 N
47 f1dm a : 1 A 1 N 1-1 S 1 N dom a = 1 A 1 N
48 47 adantl N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N dom a = 1 A 1 N
49 48 ineq1d N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N dom a 1 N = 1 A 1 N 1 N
50 49 14 eqtrdi N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N dom a 1 N =
51 46 50 syl5eq N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N 1 N dom a =
52 45 51 syl5eq N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N dom a 1 N =
53 relres Rel a 1 N
54 reldm0 Rel a 1 N a 1 N = dom a 1 N =
55 53 54 ax-mp a 1 N = dom a 1 N =
56 52 55 sylibr N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N a 1 N =
57 residm I 1 N 1 N = I 1 N
58 57 a1i N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N I 1 N 1 N = I 1 N
59 56 58 uneq12d N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N a 1 N I 1 N 1 N = I 1 N
60 uncom I 1 N = I 1 N
61 un0 I 1 N = I 1 N
62 60 61 eqtri I 1 N = I 1 N
63 59 62 eqtrdi N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N a 1 N I 1 N 1 N = I 1 N
64 44 63 syl5eq N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N a I 1 N 1 N = I 1 N
65 vex a V
66 ovex 1 N V
67 resiexg 1 N V I 1 N V
68 66 67 ax-mp I 1 N V
69 65 68 unex a I 1 N V
70 f1eq1 c = a I 1 N c : 1 A 1-1 S a I 1 N : 1 A 1-1 S
71 reseq1 c = a I 1 N c 1 N = a I 1 N 1 N
72 71 eqeq1d c = a I 1 N c 1 N = I 1 N a I 1 N 1 N = I 1 N
73 70 72 anbi12d c = a I 1 N c : 1 A 1-1 S c 1 N = I 1 N a I 1 N : 1 A 1-1 S a I 1 N 1 N = I 1 N
74 69 73 spcev a I 1 N : 1 A 1-1 S a I 1 N 1 N = I 1 N c c : 1 A 1-1 S c 1 N = I 1 N
75 43 64 74 syl2anc N 0 ¬ S Fin 1 N S A N a : 1 A 1 N 1-1 S 1 N c c : 1 A 1-1 S c 1 N = I 1 N
76 9 75 exlimddv N 0 ¬ S Fin 1 N S A N c c : 1 A 1-1 S c 1 N = I 1 N