Description: Lemma for eldioph2 . Construct necessary renaming function for one direction. (Contributed by Stefan O'Rear, 8-Oct-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | eldioph2lem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplr | |
|
2 | fzfi | |
|
3 | difinf | |
|
4 | 1 2 3 | sylancl | |
5 | fzfi | |
|
6 | diffi | |
|
7 | 5 6 | ax-mp | |
8 | isinffi | |
|
9 | 4 7 8 | sylancl | |
10 | f1f1orn | |
|
11 | 10 | adantl | |
12 | f1oi | |
|
13 | 12 | a1i | |
14 | disjdifr | |
|
15 | 14 | a1i | |
16 | f1f | |
|
17 | 16 | frnd | |
18 | 17 | adantl | |
19 | 18 | ssrind | |
20 | disjdifr | |
|
21 | 19 20 | sseqtrdi | |
22 | ss0 | |
|
23 | 21 22 | syl | |
24 | f1oun | |
|
25 | 11 13 15 23 24 | syl22anc | |
26 | f1of1 | |
|
27 | 25 26 | syl | |
28 | uncom | |
|
29 | simplrr | |
|
30 | fzss2 | |
|
31 | 29 30 | syl | |
32 | undif | |
|
33 | 31 32 | sylib | |
34 | 28 33 | eqtrid | |
35 | f1eq2 | |
|
36 | 34 35 | syl | |
37 | 27 36 | mpbid | |
38 | 17 | difss2d | |
39 | 38 | adantl | |
40 | simplrl | |
|
41 | 39 40 | unssd | |
42 | f1ss | |
|
43 | 37 41 42 | syl2anc | |
44 | resundir | |
|
45 | dmres | |
|
46 | incom | |
|
47 | f1dm | |
|
48 | 47 | adantl | |
49 | 48 | ineq1d | |
50 | 49 14 | eqtrdi | |
51 | 46 50 | eqtrid | |
52 | 45 51 | eqtrid | |
53 | relres | |
|
54 | reldm0 | |
|
55 | 53 54 | ax-mp | |
56 | 52 55 | sylibr | |
57 | residm | |
|
58 | 57 | a1i | |
59 | 56 58 | uneq12d | |
60 | uncom | |
|
61 | un0 | |
|
62 | 60 61 | eqtri | |
63 | 59 62 | eqtrdi | |
64 | 44 63 | eqtrid | |
65 | vex | |
|
66 | ovex | |
|
67 | resiexg | |
|
68 | 66 67 | ax-mp | |
69 | 65 68 | unex | |
70 | f1eq1 | |
|
71 | reseq1 | |
|
72 | 71 | eqeq1d | |
73 | 70 72 | anbi12d | |
74 | 69 73 | spcev | |
75 | 43 64 74 | syl2anc | |
76 | 9 75 | exlimddv | |