Description: Lemma for elqaa . The function N represents the denominators of the rational coefficients B . By multiplying them all together to make R , we get a number big enough to clear all the denominators and make R x. F an integer polynomial. (Contributed by Mario Carneiro, 23-Jul-2014) (Revised by AV, 3-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | elqaa.1 | |
|
elqaa.2 | |
||
elqaa.3 | |
||
elqaa.4 | |
||
elqaa.5 | |
||
elqaa.6 | |
||
Assertion | elqaalem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqaa.1 | |
|
2 | elqaa.2 | |
|
3 | elqaa.3 | |
|
4 | elqaa.4 | |
|
5 | elqaa.5 | |
|
6 | elqaa.6 | |
|
7 | fveq2 | |
|
8 | 7 | oveq1d | |
9 | 8 | eleq1d | |
10 | 9 | rabbidv | |
11 | 10 | infeq1d | |
12 | ltso | |
|
13 | 12 | infex | |
14 | 11 5 13 | fvmpt | |
15 | 14 | adantl | |
16 | ssrab2 | |
|
17 | nnuz | |
|
18 | 16 17 | sseqtri | |
19 | 2 | eldifad | |
20 | 0z | |
|
21 | zq | |
|
22 | 20 21 | ax-mp | |
23 | 4 | coef2 | |
24 | 19 22 23 | sylancl | |
25 | 24 | ffvelcdmda | |
26 | qmulz | |
|
27 | 25 26 | syl | |
28 | rabn0 | |
|
29 | 27 28 | sylibr | |
30 | infssuzcl | |
|
31 | 18 29 30 | sylancr | |
32 | 15 31 | eqeltrd | |
33 | oveq2 | |
|
34 | 33 | eleq1d | |
35 | 34 | elrab | |
36 | 32 35 | sylib | |