Metamath Proof Explorer


Theorem elqaalem1

Description: Lemma for elqaa . The function N represents the denominators of the rational coefficients B . By multiplying them all together to make R , we get a number big enough to clear all the denominators and make R x. F an integer polynomial. (Contributed by Mario Carneiro, 23-Jul-2014) (Revised by AV, 3-Oct-2020)

Ref Expression
Hypotheses elqaa.1 φA
elqaa.2 φFPoly0𝑝
elqaa.3 φFA=0
elqaa.4 B=coeffF
elqaa.5 N=k0supn|Bkn<
elqaa.6 R=seq0×NdegF
Assertion elqaalem1 φK0NKBKNK

Proof

Step Hyp Ref Expression
1 elqaa.1 φA
2 elqaa.2 φFPoly0𝑝
3 elqaa.3 φFA=0
4 elqaa.4 B=coeffF
5 elqaa.5 N=k0supn|Bkn<
6 elqaa.6 R=seq0×NdegF
7 fveq2 k=KBk=BK
8 7 oveq1d k=KBkn=BKn
9 8 eleq1d k=KBknBKn
10 9 rabbidv k=Kn|Bkn=n|BKn
11 10 infeq1d k=Ksupn|Bkn<=supn|BKn<
12 ltso <Or
13 12 infex supn|BKn<V
14 11 5 13 fvmpt K0NK=supn|BKn<
15 14 adantl φK0NK=supn|BKn<
16 ssrab2 n|BKn
17 nnuz =1
18 16 17 sseqtri n|BKn1
19 2 eldifad φFPoly
20 0z 0
21 zq 00
22 20 21 ax-mp 0
23 4 coef2 FPoly0B:0
24 19 22 23 sylancl φB:0
25 24 ffvelcdmda φK0BK
26 qmulz BKnBKn
27 25 26 syl φK0nBKn
28 rabn0 n|BKnnBKn
29 27 28 sylibr φK0n|BKn
30 infssuzcl n|BKn1n|BKnsupn|BKn<n|BKn
31 18 29 30 sylancr φK0supn|BKn<n|BKn
32 15 31 eqeltrd φK0NKn|BKn
33 oveq2 n=NKBKn=BKNK
34 33 eleq1d n=NKBKnBKNK
35 34 elrab NKn|BKnNKBKNK
36 32 35 sylib φK0NKBKNK