Metamath Proof Explorer


Theorem emcllem5

Description: Lemma for emcl . The partial sums of the series T , which is used in Definition df-em , is in fact the same as G . (Contributed by Mario Carneiro, 11-Jul-2014)

Ref Expression
Hypotheses emcl.1 F=nm=1n1mlogn
emcl.2 G=nm=1n1mlogn+1
emcl.3 H=nlog1+1n
emcl.4 T=n1nlog1+1n
Assertion emcllem5 G=seq1+T

Proof

Step Hyp Ref Expression
1 emcl.1 F=nm=1n1mlogn
2 emcl.2 G=nm=1n1mlogn+1
3 emcl.3 H=nlog1+1n
4 emcl.4 T=n1nlog1+1n
5 elfznn m1nm
6 5 adantl nm1nm
7 6 nncnd nm1nm
8 1cnd nm1n1
9 6 nnne0d nm1nm0
10 7 8 7 9 divdird nm1nm+1m=mm+1m
11 7 9 dividd nm1nmm=1
12 11 oveq1d nm1nmm+1m=1+1m
13 10 12 eqtrd nm1nm+1m=1+1m
14 13 fveq2d nm1nlogm+1m=log1+1m
15 peano2nn mm+1
16 6 15 syl nm1nm+1
17 16 nnrpd nm1nm+1+
18 6 nnrpd nm1nm+
19 17 18 relogdivd nm1nlogm+1m=logm+1logm
20 14 19 eqtr3d nm1nlog1+1m=logm+1logm
21 20 sumeq2dv nm=1nlog1+1m=m=1nlogm+1logm
22 fveq2 x=mlogx=logm
23 fveq2 x=m+1logx=logm+1
24 fveq2 x=1logx=log1
25 fveq2 x=n+1logx=logn+1
26 nnz nn
27 peano2nn nn+1
28 nnuz =1
29 27 28 eleqtrdi nn+11
30 elfznn x1n+1x
31 30 adantl nx1n+1x
32 31 nnrpd nx1n+1x+
33 32 relogcld nx1n+1logx
34 33 recnd nx1n+1logx
35 22 23 24 25 26 29 34 telfsum2 nm=1nlogm+1logm=logn+1log1
36 log1 log1=0
37 36 oveq2i logn+1log1=logn+10
38 27 nnrpd nn+1+
39 38 relogcld nlogn+1
40 39 recnd nlogn+1
41 40 subid1d nlogn+10=logn+1
42 37 41 eqtrid nlogn+1log1=logn+1
43 21 35 42 3eqtrd nm=1nlog1+1m=logn+1
44 43 oveq2d nm=1n1mm=1nlog1+1m=m=1n1mlogn+1
45 fzfid n1nFin
46 6 nnrecred nm1n1m
47 46 recnd nm1n1m
48 1rp 1+
49 18 rpreccld nm1n1m+
50 rpaddcl 1+1m+1+1m+
51 48 49 50 sylancr nm1n1+1m+
52 51 relogcld nm1nlog1+1m
53 52 recnd nm1nlog1+1m
54 45 47 53 fsumsub nm=1n1mlog1+1m=m=1n1mm=1nlog1+1m
55 oveq2 n=m1n=1m
56 55 oveq2d n=m1+1n=1+1m
57 56 fveq2d n=mlog1+1n=log1+1m
58 55 57 oveq12d n=m1nlog1+1n=1mlog1+1m
59 ovex 1mlog1+1mV
60 58 4 59 fvmpt mTm=1mlog1+1m
61 6 60 syl nm1nTm=1mlog1+1m
62 id nn
63 62 28 eleqtrdi nn1
64 46 52 resubcld nm1n1mlog1+1m
65 64 recnd nm1n1mlog1+1m
66 61 63 65 fsumser nm=1n1mlog1+1m=seq1+Tn
67 54 66 eqtr3d nm=1n1mm=1nlog1+1m=seq1+Tn
68 44 67 eqtr3d nm=1n1mlogn+1=seq1+Tn
69 68 mpteq2ia nm=1n1mlogn+1=nseq1+Tn
70 1z 1
71 seqfn 1seq1+TFn1
72 70 71 ax-mp seq1+TFn1
73 28 fneq2i seq1+TFnseq1+TFn1
74 72 73 mpbir seq1+TFn
75 dffn5 seq1+TFnseq1+T=nseq1+Tn
76 74 75 mpbi seq1+T=nseq1+Tn
77 69 2 76 3eqtr4i G=seq1+T