Metamath Proof Explorer


Theorem eqlkr3

Description: Two functionals with the same kernel are equal if they are equal at any nonzero value. (Contributed by NM, 2-Jan-2015)

Ref Expression
Hypotheses eqlkr3.v V=BaseW
eqlkr3.s S=ScalarW
eqlkr3.r R=BaseS
eqlkr3.o 0˙=0S
eqlkr3.f F=LFnlW
eqlkr3.k K=LKerW
eqlkr3.w φWLVec
eqlkr3.x φXV
eqlkr3.g φGF
eqlkr3.h φHF
eqlkr3.e φKG=KH
eqlkr3.a φGX=HX
eqlkr3.n φGX0˙
Assertion eqlkr3 φG=H

Proof

Step Hyp Ref Expression
1 eqlkr3.v V=BaseW
2 eqlkr3.s S=ScalarW
3 eqlkr3.r R=BaseS
4 eqlkr3.o 0˙=0S
5 eqlkr3.f F=LFnlW
6 eqlkr3.k K=LKerW
7 eqlkr3.w φWLVec
8 eqlkr3.x φXV
9 eqlkr3.g φGF
10 eqlkr3.h φHF
11 eqlkr3.e φKG=KH
12 eqlkr3.a φGX=HX
13 eqlkr3.n φGX0˙
14 2 3 1 5 lflf WLVecGFG:VR
15 7 9 14 syl2anc φG:VR
16 15 ffnd φGFnV
17 2 3 1 5 lflf WLVecHFH:VR
18 7 10 17 syl2anc φH:VR
19 18 ffnd φHFnV
20 eqid S=S
21 2 3 20 1 5 6 eqlkr WLVecGFHFKG=KHrRxVHx=GxSr
22 7 9 10 11 21 syl121anc φrRxVHx=GxSr
23 8 adantr φrRXV
24 fveq2 x=XHx=HX
25 fveq2 x=XGx=GX
26 25 oveq1d x=XGxSr=GXSr
27 24 26 eqeq12d x=XHx=GxSrHX=GXSr
28 27 rspcv XVxVHx=GxSrHX=GXSr
29 23 28 syl φrRxVHx=GxSrHX=GXSr
30 12 adantr φrRGX=HX
31 30 adantr φrRHX=GXSrGX=HX
32 simpr φrRHX=GXSrHX=GXSr
33 31 32 eqtr2d φrRHX=GXSrGXSr=GX
34 33 oveq2d φrRHX=GXSrinvrSGXSGXSr=invrSGXSGX
35 2 lvecdrng WLVecSDivRing
36 7 35 syl φSDivRing
37 36 adantr φrRSDivRing
38 2 3 1 5 lflcl WLVecGFXVGXR
39 7 9 8 38 syl3anc φGXR
40 39 adantr φrRGXR
41 13 adantr φrRGX0˙
42 eqid 1S=1S
43 eqid invrS=invrS
44 3 4 20 42 43 drnginvrl SDivRingGXRGX0˙invrSGXSGX=1S
45 37 40 41 44 syl3anc φrRinvrSGXSGX=1S
46 45 oveq1d φrRinvrSGXSGXSr=1SSr
47 lveclmod WLVecWLMod
48 7 47 syl φWLMod
49 2 lmodring WLModSRing
50 48 49 syl φSRing
51 50 adantr φrRSRing
52 3 4 43 drnginvrcl SDivRingGXRGX0˙invrSGXR
53 37 40 41 52 syl3anc φrRinvrSGXR
54 simpr φrRrR
55 3 20 ringass SRinginvrSGXRGXRrRinvrSGXSGXSr=invrSGXSGXSr
56 51 53 40 54 55 syl13anc φrRinvrSGXSGXSr=invrSGXSGXSr
57 3 20 42 ringlidm SRingrR1SSr=r
58 51 54 57 syl2anc φrR1SSr=r
59 46 56 58 3eqtr3d φrRinvrSGXSGXSr=r
60 59 adantr φrRHX=GXSrinvrSGXSGXSr=r
61 45 adantr φrRHX=GXSrinvrSGXSGX=1S
62 34 60 61 3eqtr3d φrRHX=GXSrr=1S
63 62 ex φrRHX=GXSrr=1S
64 29 63 syld φrRxVHx=GxSrr=1S
65 64 ancrd φrRxVHx=GxSrr=1SxVHx=GxSr
66 65 reximdva φrRxVHx=GxSrrRr=1SxVHx=GxSr
67 22 66 mpd φrRr=1SxVHx=GxSr
68 3 42 ringidcl SRing1SR
69 50 68 syl φ1SR
70 oveq2 r=1SGxSr=GxS1S
71 70 eqeq2d r=1SHx=GxSrHx=GxS1S
72 71 ralbidv r=1SxVHx=GxSrxVHx=GxS1S
73 72 ceqsrexv 1SRrRr=1SxVHx=GxSrxVHx=GxS1S
74 69 73 syl φrRr=1SxVHx=GxSrxVHx=GxS1S
75 67 74 mpbid φxVHx=GxS1S
76 75 r19.21bi φxVHx=GxS1S
77 48 adantr φxVWLMod
78 77 49 syl φxVSRing
79 7 adantr φxVWLVec
80 9 adantr φxVGF
81 simpr φxVxV
82 2 3 1 5 lflcl WLVecGFxVGxR
83 79 80 81 82 syl3anc φxVGxR
84 3 20 42 ringridm SRingGxRGxS1S=Gx
85 78 83 84 syl2anc φxVGxS1S=Gx
86 76 85 eqtr2d φxVGx=Hx
87 16 19 86 eqfnfvd φG=H