Metamath Proof Explorer


Theorem erdszelem10

Description: Lemma for erdsze . (Contributed by Mario Carneiro, 22-Jan-2015)

Ref Expression
Hypotheses erdsze.n φN
erdsze.f φF:1N1-1
erdszelem.i I=x1Nsup.y𝒫1x|FyIsom<,<yFyxy<
erdszelem.j J=x1Nsup.y𝒫1x|FyIsom<,<-1yFyxy<
erdszelem.t T=n1NInJn
erdszelem.r φR
erdszelem.s φS
erdszelem.m φR1S1<N
Assertion erdszelem10 φm1N¬Im1R1¬Jm1S1

Proof

Step Hyp Ref Expression
1 erdsze.n φN
2 erdsze.f φF:1N1-1
3 erdszelem.i I=x1Nsup.y𝒫1x|FyIsom<,<yFyxy<
4 erdszelem.j J=x1Nsup.y𝒫1x|FyIsom<,<-1yFyxy<
5 erdszelem.t T=n1NInJn
6 erdszelem.r φR
7 erdszelem.s φS
8 erdszelem.m φR1S1<N
9 fzfi 1R1Fin
10 fzfi 1S1Fin
11 xpfi 1R1Fin1S1Fin1R1×1S1Fin
12 9 10 11 mp2an 1R1×1S1Fin
13 ssdomg 1R1×1S1FinranT1R1×1S1ranT1R1×1S1
14 12 13 ax-mp ranT1R1×1S1ranT1R1×1S1
15 domnsym ranT1R1×1S1¬1R1×1S1ranT
16 14 15 syl ranT1R1×1S1¬1R1×1S1ranT
17 hashxp 1R1Fin1S1Fin1R1×1S1=1R11S1
18 9 10 17 mp2an 1R1×1S1=1R11S1
19 nnm1nn0 RR10
20 hashfz1 R101R1=R1
21 6 19 20 3syl φ1R1=R1
22 nnm1nn0 SS10
23 hashfz1 S101S1=S1
24 7 22 23 3syl φ1S1=S1
25 21 24 oveq12d φ1R11S1=R1S1
26 18 25 eqtrid φ1R1×1S1=R1S1
27 1 nnnn0d φN0
28 hashfz1 N01N=N
29 27 28 syl φ1N=N
30 8 26 29 3brtr4d φ1R1×1S1<1N
31 fzfid φ1NFin
32 hashsdom 1R1×1S1Fin1NFin1R1×1S1<1N1R1×1S11N
33 12 31 32 sylancr φ1R1×1S1<1N1R1×1S11N
34 30 33 mpbid φ1R1×1S11N
35 1 2 3 4 5 erdszelem9 φT:1N1-1×
36 f1f1orn T:1N1-1×T:1N1-1 ontoranT
37 ovex 1NV
38 37 f1oen T:1N1-1 ontoranT1NranT
39 35 36 38 3syl φ1NranT
40 sdomentr 1R1×1S11N1NranT1R1×1S1ranT
41 34 39 40 syl2anc φ1R1×1S1ranT
42 16 41 nsyl3 φ¬ranT1R1×1S1
43 nss ¬ranT1R1×1S1ssranT¬s1R1×1S1
44 df-rex sranT¬s1R1×1S1ssranT¬s1R1×1S1
45 43 44 bitr4i ¬ranT1R1×1S1sranT¬s1R1×1S1
46 42 45 sylib φsranT¬s1R1×1S1
47 f1fn T:1N1-1×TFn1N
48 eleq1 s=Tms1R1×1S1Tm1R1×1S1
49 48 notbid s=Tm¬s1R1×1S1¬Tm1R1×1S1
50 49 rexrn TFn1NsranT¬s1R1×1S1m1N¬Tm1R1×1S1
51 35 47 50 3syl φsranT¬s1R1×1S1m1N¬Tm1R1×1S1
52 46 51 mpbid φm1N¬Tm1R1×1S1
53 fveq2 n=mIn=Im
54 fveq2 n=mJn=Jm
55 53 54 opeq12d n=mInJn=ImJm
56 opex ImJmV
57 55 5 56 fvmpt m1NTm=ImJm
58 57 adantl φm1NTm=ImJm
59 58 eleq1d φm1NTm1R1×1S1ImJm1R1×1S1
60 opelxp ImJm1R1×1S1Im1R1Jm1S1
61 59 60 bitrdi φm1NTm1R1×1S1Im1R1Jm1S1
62 61 notbid φm1N¬Tm1R1×1S1¬Im1R1Jm1S1
63 ianor ¬Im1R1Jm1S1¬Im1R1¬Jm1S1
64 62 63 bitrdi φm1N¬Tm1R1×1S1¬Im1R1¬Jm1S1
65 64 rexbidva φm1N¬Tm1R1×1S1m1N¬Im1R1¬Jm1S1
66 52 65 mpbid φm1N¬Im1R1¬Jm1S1