Metamath Proof Explorer


Theorem esumcvgsum

Description: The value of the extended sum when the corresponding sum is convergent. (Contributed by Thierry Arnoux, 29-Oct-2019)

Ref Expression
Hypotheses esumcvgsum.1 k=iA=B
esumcvgsum.2 φkA0+∞
esumcvgsum.3 φkFk=A
esumcvgsum.4 φseq1+FL
esumcvgsum.5 φL
Assertion esumcvgsum φ*kA=kA

Proof

Step Hyp Ref Expression
1 esumcvgsum.1 k=iA=B
2 esumcvgsum.2 φkA0+∞
3 esumcvgsum.3 φkFk=A
4 esumcvgsum.4 φseq1+FL
5 esumcvgsum.5 φL
6 simpll φjk1jφ
7 elfznn k1jk
8 7 adantl φjk1jk
9 6 8 3 syl2anc φjk1jFk=A
10 nnuz =1
11 10 eleq2i jj1
12 11 biimpi jj1
13 12 adantl φjj1
14 mnfxr −∞*
15 pnfxr +∞*
16 0re 0
17 mnflt 0−∞<0
18 16 17 ax-mp −∞<0
19 pnfge +∞*+∞+∞
20 15 19 ax-mp +∞+∞
21 icossioo −∞*+∞*−∞<0+∞+∞0+∞−∞+∞
22 14 15 18 20 21 mp4an 0+∞−∞+∞
23 ioomax −∞+∞=
24 22 23 sseqtri 0+∞
25 6 8 2 syl2anc φjk1jA0+∞
26 24 25 sselid φjk1jA
27 26 recnd φjk1jA
28 9 13 27 fsumser φjk=1jA=seq1+Fj
29 28 mpteq2dva φjk=1jA=jseq1+Fj
30 1z 1
31 seqfn 1seq1+FFn1
32 30 31 ax-mp seq1+FFn1
33 fneq2 =1seq1+FFnseq1+FFn1
34 10 33 ax-mp seq1+FFnseq1+FFn1
35 32 34 mpbir seq1+FFn
36 dffn5 seq1+FFnseq1+F=jseq1+Fj
37 35 36 mpbi seq1+F=jseq1+Fj
38 seqex seq1+FV
39 38 a1i φseq1+FV
40 breldmg seq1+FVLseq1+FLseq1+Fdom
41 39 5 4 40 syl3anc φseq1+Fdom
42 37 41 eqeltrrid φjseq1+Fjdom
43 29 42 eqeltrd φjk=1jAdom
44 2 1 43 esumpcvgval φ*kA=kA