Description: The value of the extended sum when the corresponding sum is convergent. (Contributed by Thierry Arnoux, 29-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | esumcvgsum.1 | |
|
esumcvgsum.2 | |
||
esumcvgsum.3 | |
||
esumcvgsum.4 | |
||
esumcvgsum.5 | |
||
Assertion | esumcvgsum | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | esumcvgsum.1 | |
|
2 | esumcvgsum.2 | |
|
3 | esumcvgsum.3 | |
|
4 | esumcvgsum.4 | |
|
5 | esumcvgsum.5 | |
|
6 | simpll | |
|
7 | elfznn | |
|
8 | 7 | adantl | |
9 | 6 8 3 | syl2anc | |
10 | nnuz | |
|
11 | 10 | eleq2i | |
12 | 11 | biimpi | |
13 | 12 | adantl | |
14 | mnfxr | |
|
15 | pnfxr | |
|
16 | 0re | |
|
17 | mnflt | |
|
18 | 16 17 | ax-mp | |
19 | pnfge | |
|
20 | 15 19 | ax-mp | |
21 | icossioo | |
|
22 | 14 15 18 20 21 | mp4an | |
23 | ioomax | |
|
24 | 22 23 | sseqtri | |
25 | 6 8 2 | syl2anc | |
26 | 24 25 | sselid | |
27 | 26 | recnd | |
28 | 9 13 27 | fsumser | |
29 | 28 | mpteq2dva | |
30 | 1z | |
|
31 | seqfn | |
|
32 | 30 31 | ax-mp | |
33 | fneq2 | |
|
34 | 10 33 | ax-mp | |
35 | 32 34 | mpbir | |
36 | dffn5 | |
|
37 | 35 36 | mpbi | |
38 | seqex | |
|
39 | 38 | a1i | |
40 | breldmg | |
|
41 | 39 5 4 40 | syl3anc | |
42 | 37 41 | eqeltrrid | |
43 | 29 42 | eqeltrd | |
44 | 2 1 43 | esumpcvgval | |