Metamath Proof Explorer


Theorem etransc

Description: _e is transcendental. Section *5 of Juillerat p. 11 can be used as a reference for this proof. (Contributed by Glauco Siliprandi, 5-Apr-2020) (Proof shortened by AV, 28-Sep-2020)

Ref Expression
Assertion etransc e𝔸

Proof

Step Hyp Ref Expression
1 1red kk01
2 nn0abscl kk0
3 2 nn0red kk
4 3 adantr kk0k
5 nnabscl kk0k
6 5 nnge1d kk01k
7 1 4 6 lensymd kk0¬k<1
8 nan k¬k0k<1kk0¬k<1
9 7 8 mpbir k¬k0k<1
10 9 nrex ¬kk0k<1
11 ere e
12 11 recni e
13 neldif e¬e𝔸e𝔸
14 12 13 mpan ¬e𝔸e𝔸
15 ene0 e0
16 elsng ee0e=0
17 12 16 ax-mp e0e=0
18 15 17 nemtbir ¬e0
19 18 a1i ¬e𝔸¬e0
20 14 19 eldifd ¬e𝔸e𝔸0
21 elaa2 e𝔸0eqPolycoeffq00qe=0
22 20 21 sylib ¬e𝔸eqPolycoeffq00qe=0
23 22 simprd ¬e𝔸qPolycoeffq00qe=0
24 simpl qPolycoeffq00qPoly
25 0nn0 00
26 n0p qPoly00coeffq00q0𝑝
27 25 26 mp3an2 qPolycoeffq00q0𝑝
28 nelsn q0𝑝¬q0𝑝
29 27 28 syl qPolycoeffq00¬q0𝑝
30 24 29 eldifd qPolycoeffq00qPoly0𝑝
31 30 adantrr qPolycoeffq00qe=0qPoly0𝑝
32 simprr qPolycoeffq00qe=0qe=0
33 eqid coeffq=coeffq
34 simprl qPolycoeffq00qe=0coeffq00
35 eqid degq=degq
36 eqid l=0degqcoeffqleldegqdegqdegq+1=l=0degqcoeffqleldegqdegqdegq+1
37 eqid n0l=0degqcoeffqleldegqdegqdegq+1degqdegq+1nn!=n0l=0degqcoeffqleldegqdegqdegq+1degqdegq+1nn!
38 fveq2 h=lcoeffqh=coeffql
39 oveq2 h=leh=el
40 38 39 oveq12d h=lcoeffqheh=coeffqlel
41 40 fveq2d h=lcoeffqheh=coeffqlel
42 41 oveq1d h=lcoeffqhehdegqdegqdegq+1=coeffqleldegqdegqdegq+1
43 42 cbvsumv h=0degqcoeffqhehdegqdegqdegq+1=l=0degqcoeffqleldegqdegqdegq+1
44 43 a1i m=nh=0degqcoeffqhehdegqdegqdegq+1=l=0degqcoeffqleldegqdegqdegq+1
45 oveq2 m=ndegqdegq+1m=degqdegq+1n
46 fveq2 m=nm!=n!
47 45 46 oveq12d m=ndegqdegq+1mm!=degqdegq+1nn!
48 44 47 oveq12d m=nh=0degqcoeffqhehdegqdegqdegq+1degqdegq+1mm!=l=0degqcoeffqleldegqdegqdegq+1degqdegq+1nn!
49 48 cbvmptv m0h=0degqcoeffqhehdegqdegqdegq+1degqdegq+1mm!=n0l=0degqcoeffqleldegqdegqdegq+1degqdegq+1nn!
50 49 a1i m=nm0h=0degqcoeffqhehdegqdegqdegq+1degqdegq+1mm!=n0l=0degqcoeffqleldegqdegqdegq+1degqdegq+1nn!
51 id m=nm=n
52 50 51 fveq12d m=nm0h=0degqcoeffqhehdegqdegqdegq+1degqdegq+1mm!m=n0l=0degqcoeffqleldegqdegqdegq+1degqdegq+1nn!n
53 52 fveq2d m=nm0h=0degqcoeffqhehdegqdegqdegq+1degqdegq+1mm!m=n0l=0degqcoeffqleldegqdegqdegq+1degqdegq+1nn!n
54 53 breq1d m=nm0h=0degqcoeffqhehdegqdegqdegq+1degqdegq+1mm!m<1n0l=0degqcoeffqleldegqdegqdegq+1degqdegq+1nn!n<1
55 54 cbvralvw mjm0h=0degqcoeffqhehdegqdegqdegq+1degqdegq+1mm!m<1njn0l=0degqcoeffqleldegqdegqdegq+1degqdegq+1nn!n<1
56 fveq2 j=ij=i
57 56 raleqdv j=injn0l=0degqcoeffqleldegqdegqdegq+1degqdegq+1nn!n<1nin0l=0degqcoeffqleldegqdegqdegq+1degqdegq+1nn!n<1
58 55 57 bitrid j=imjm0h=0degqcoeffqhehdegqdegqdegq+1degqdegq+1mm!m<1nin0l=0degqcoeffqleldegqdegqdegq+1degqdegq+1nn!n<1
59 58 cbvrabv j0|mjm0h=0degqcoeffqhehdegqdegqdegq+1degqdegq+1mm!m<1=i0|nin0l=0degqcoeffqleldegqdegqdegq+1degqdegq+1nn!n<1
60 59 infeq1i supj0|mjm0h=0degqcoeffqhehdegqdegqdegq+1degqdegq+1mm!m<1<=supi0|nin0l=0degqcoeffqleldegqdegqdegq+1degqdegq+1nn!n<1<
61 eqid supcoeffq0degq!supj0|mjm0h=0degqcoeffqhehdegqdegqdegq+1degqdegq+1mm!m<1<*<=supcoeffq0degq!supj0|mjm0h=0degqcoeffqhehdegqdegqdegq+1degqdegq+1mm!m<1<*<
62 31 32 33 34 35 36 37 60 61 etransclem48 qPolycoeffq00qe=0kk0k<1
63 62 rexlimiva qPolycoeffq00qe=0kk0k<1
64 23 63 syl ¬e𝔸kk0k<1
65 10 64 mt3 e𝔸