Description: _e is transcendental. Section *5 of Juillerat p. 11 can be used as a reference for this proof. (Contributed by Glauco Siliprandi, 5-Apr-2020) (Proof shortened by AV, 28-Sep-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | etransc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1red | |
|
2 | nn0abscl | |
|
3 | 2 | nn0red | |
4 | 3 | adantr | |
5 | nnabscl | |
|
6 | 5 | nnge1d | |
7 | 1 4 6 | lensymd | |
8 | nan | |
|
9 | 7 8 | mpbir | |
10 | 9 | nrex | |
11 | ere | |
|
12 | 11 | recni | |
13 | neldif | |
|
14 | 12 13 | mpan | |
15 | ene0 | |
|
16 | elsng | |
|
17 | 12 16 | ax-mp | |
18 | 15 17 | nemtbir | |
19 | 18 | a1i | |
20 | 14 19 | eldifd | |
21 | elaa2 | |
|
22 | 20 21 | sylib | |
23 | 22 | simprd | |
24 | simpl | |
|
25 | 0nn0 | |
|
26 | n0p | |
|
27 | 25 26 | mp3an2 | |
28 | nelsn | |
|
29 | 27 28 | syl | |
30 | 24 29 | eldifd | |
31 | 30 | adantrr | |
32 | simprr | |
|
33 | eqid | |
|
34 | simprl | |
|
35 | eqid | |
|
36 | eqid | |
|
37 | eqid | |
|
38 | fveq2 | |
|
39 | oveq2 | |
|
40 | 38 39 | oveq12d | |
41 | 40 | fveq2d | |
42 | 41 | oveq1d | |
43 | 42 | cbvsumv | |
44 | 43 | a1i | |
45 | oveq2 | |
|
46 | fveq2 | |
|
47 | 45 46 | oveq12d | |
48 | 44 47 | oveq12d | |
49 | 48 | cbvmptv | |
50 | 49 | a1i | |
51 | id | |
|
52 | 50 51 | fveq12d | |
53 | 52 | fveq2d | |
54 | 53 | breq1d | |
55 | 54 | cbvralvw | |
56 | fveq2 | |
|
57 | 56 | raleqdv | |
58 | 55 57 | bitrid | |
59 | 58 | cbvrabv | |
60 | 59 | infeq1i | |
61 | eqid | |
|
62 | 31 32 33 34 35 36 37 60 61 | etransclem48 | |
63 | 62 | rexlimiva | |
64 | 23 63 | syl | |
65 | 10 64 | mt3 | |