Metamath Proof Explorer


Theorem etransclem37

Description: ( P - 1 ) factorial divides the N -th derivative of F applied to J . (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses etransclem37.s φS
etransclem37.x φXTopOpenfld𝑡S
etransclem37.p φP
etransclem37.m φM0
etransclem37.f F=xXxP1j=1MxjP
etransclem37.n φN0
etransclem37.h H=j0MxXxjifj=0P1P
etransclem37.c C=n0c0n0M|j=0Mcj=n
etransclem37.9 φJ0M
etransclem37.j φJX
Assertion etransclem37 φP1!SDnFNJ

Proof

Step Hyp Ref Expression
1 etransclem37.s φS
2 etransclem37.x φXTopOpenfld𝑡S
3 etransclem37.p φP
4 etransclem37.m φM0
5 etransclem37.f F=xXxP1j=1MxjP
6 etransclem37.n φN0
7 etransclem37.h H=j0MxXxjifj=0P1P
8 etransclem37.c C=n0c0n0M|j=0Mcj=n
9 etransclem37.9 φJ0M
10 etransclem37.j φJX
11 8 6 etransclem16 φCNFin
12 nnm1nn0 PP10
13 3 12 syl φP10
14 13 faccld φP1!
15 14 nnzd φP1!
16 8 6 etransclem12 φCN=c0N0M|j=0Mcj=N
17 16 eleq2d φcCNcc0N0M|j=0Mcj=N
18 17 biimpa φcCNcc0N0M|j=0Mcj=N
19 rabid cc0N0M|j=0Mcj=Nc0N0Mj=0Mcj=N
20 19 biimpi cc0N0M|j=0Mcj=Nc0N0Mj=0Mcj=N
21 20 simprd cc0N0M|j=0Mcj=Nj=0Mcj=N
22 18 21 syl φcCNj=0Mcj=N
23 22 eqcomd φcCNN=j=0Mcj
24 23 fveq2d φcCNN!=j=0Mcj!
25 24 oveq1d φcCNN!j=0Mcj!=j=0Mcj!j=0Mcj!
26 nfcv _jc
27 fzfid φcCN0MFin
28 nn0ex 0V
29 28 a1i cc0N0M|j=0Mcj=N0V
30 fzssnn0 0N0
31 mapss 0V0N00N0M00M
32 29 30 31 sylancl cc0N0M|j=0Mcj=N0N0M00M
33 20 simpld cc0N0M|j=0Mcj=Nc0N0M
34 32 33 sseldd cc0N0M|j=0Mcj=Nc00M
35 18 34 syl φcCNc00M
36 26 27 35 mccl φcCNj=0Mcj!j=0Mcj!
37 25 36 eqeltrd φcCNN!j=0Mcj!
38 37 nnzd φcCNN!j=0Mcj!
39 3 adantr φcCNP
40 4 adantr φcCNM0
41 elmapi c0N0Mc:0M0N
42 18 33 41 3syl φcCNc:0M0N
43 9 elfzelzd φJ
44 43 adantr φcCNJ
45 39 40 42 44 etransclem10 φcCNifP1<c00P1!P-1-c0!JP-1-c0
46 fzfid φcCN1MFin
47 39 adantr φcCNj1MP
48 42 adantr φcCNj1Mc:0M0N
49 0z 0
50 fzp1ss 00+1M0M
51 49 50 ax-mp 0+1M0M
52 51 sseli j0+1Mj0M
53 1e0p1 1=0+1
54 53 oveq1i 1M=0+1M
55 52 54 eleq2s j1Mj0M
56 55 adantl φcCNj1Mj0M
57 44 adantr φcCNj1MJ
58 47 48 56 57 etransclem3 φcCNj1MifP<cj0P!Pcj!JjPcj
59 46 58 fprodzcl φcCNj=1MifP<cj0P!Pcj!JjPcj
60 45 59 zmulcld φcCNifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcj
61 38 60 zmulcld φcCNN!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcj
62 6 adantr φcCNN0
63 etransclem11 n0c0n0M|j=0Mcj=n=m0d0m0M|k=0Mdk=m
64 8 63 eqtri C=m0d0m0M|k=0Mdk=m
65 simpr φcCNcCN
66 9 adantr φcCNJ0M
67 fveq2 j=kcj=ck
68 67 fveq2d j=kcj!=ck!
69 68 cbvprodv j=0Mcj!=k=0Mck!
70 69 oveq2i N!j=0Mcj!=N!k=0Mck!
71 67 breq2d j=kP<cjP<ck
72 67 oveq2d j=kPcj=Pck
73 72 fveq2d j=kPcj!=Pck!
74 73 oveq2d j=kP!Pcj!=P!Pck!
75 oveq2 j=kJj=Jk
76 75 72 oveq12d j=kJjPcj=JkPck
77 74 76 oveq12d j=kP!Pcj!JjPcj=P!Pck!JkPck
78 71 77 ifbieq2d j=kifP<cj0P!Pcj!JjPcj=ifP<ck0P!Pck!JkPck
79 78 cbvprodv j=1MifP<cj0P!Pcj!JjPcj=k=1MifP<ck0P!Pck!JkPck
80 79 oveq2i ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcj=ifP1<c00P1!P-1-c0!JP-1-c0k=1MifP<ck0P!Pck!JkPck
81 70 80 oveq12i N!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcj=N!k=0Mck!ifP1<c00P1!P-1-c0!JP-1-c0k=1MifP<ck0P!Pck!JkPck
82 39 40 62 64 65 66 81 etransclem28 φcCNP1!N!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcj
83 11 15 61 82 fsumdvds φP1!cCNN!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcj
84 1 2 3 4 5 6 7 8 10 etransclem31 φSDnFNJ=cCNN!j=0Mcj!ifP1<c00P1!P-1-c0!JP-1-c0j=1MifP<cj0P!Pcj!JjPcj
85 83 84 breqtrrd φP1!SDnFNJ