Metamath Proof Explorer


Theorem evlsevl

Description: Evaluation in a subring is the same as evaluation in the ring itself. (Contributed by SN, 9-Feb-2025)

Ref Expression
Hypotheses evlsevl.q Q=IevalSubSR
evlsevl.o O=IevalS
evlsevl.w W=ImPolyU
evlsevl.u U=S𝑠R
evlsevl.b B=BaseW
evlsevl.i φIV
evlsevl.s φSCRing
evlsevl.r φRSubRingS
evlsevl.f φFB
Assertion evlsevl φQF=OF

Proof

Step Hyp Ref Expression
1 evlsevl.q Q=IevalSubSR
2 evlsevl.o O=IevalS
3 evlsevl.w W=ImPolyU
4 evlsevl.u U=S𝑠R
5 evlsevl.b B=BaseW
6 evlsevl.i φIV
7 evlsevl.s φSCRing
8 evlsevl.r φRSubRingS
9 evlsevl.f φFB
10 eqid xRBaseSI×x=xRBaseSI×x
11 sneq x=Fbx=Fb
12 11 xpeq2d x=FbBaseSI×x=BaseSI×Fb
13 eqid BaseU=BaseU
14 eqid h0I|h-1Fin=h0I|h-1Fin
15 3 13 5 14 9 mplelf φF:h0I|h-1FinBaseU
16 15 ffvelcdmda φbh0I|h-1FinFbBaseU
17 4 subrgbas RSubRingSR=BaseU
18 8 17 syl φR=BaseU
19 18 adantr φbh0I|h-1FinR=BaseU
20 16 19 eleqtrrd φbh0I|h-1FinFbR
21 ovexd φbh0I|h-1FinBaseSIV
22 snex FbV
23 22 a1i φbh0I|h-1FinFbV
24 21 23 xpexd φbh0I|h-1FinBaseSI×FbV
25 10 12 20 24 fvmptd3 φbh0I|h-1FinxRBaseSI×xFb=BaseSI×Fb
26 eqid xBaseSBaseSI×x=xBaseSBaseSI×x
27 eqid BaseS=BaseS
28 27 subrgss RSubRingSRBaseS
29 8 28 syl φRBaseS
30 29 adantr φbh0I|h-1FinRBaseS
31 30 20 sseldd φbh0I|h-1FinFbBaseS
32 26 12 31 24 fvmptd3 φbh0I|h-1FinxBaseSBaseSI×xFb=BaseSI×Fb
33 25 32 eqtr4d φbh0I|h-1FinxRBaseSI×xFb=xBaseSBaseSI×xFb
34 33 oveq1d φbh0I|h-1FinxRBaseSI×xFbS𝑠BaseSImulGrpS𝑠BaseSIbmulGrpS𝑠BaseSIfxIaBaseSIax=xBaseSBaseSI×xFbS𝑠BaseSImulGrpS𝑠BaseSIbmulGrpS𝑠BaseSIfxIaBaseSIax
35 34 mpteq2dva φbh0I|h-1FinxRBaseSI×xFbS𝑠BaseSImulGrpS𝑠BaseSIbmulGrpS𝑠BaseSIfxIaBaseSIax=bh0I|h-1FinxBaseSBaseSI×xFbS𝑠BaseSImulGrpS𝑠BaseSIbmulGrpS𝑠BaseSIfxIaBaseSIax
36 35 oveq2d φS𝑠BaseSIbh0I|h-1FinxRBaseSI×xFbS𝑠BaseSImulGrpS𝑠BaseSIbmulGrpS𝑠BaseSIfxIaBaseSIax=S𝑠BaseSIbh0I|h-1FinxBaseSBaseSI×xFbS𝑠BaseSImulGrpS𝑠BaseSIbmulGrpS𝑠BaseSIfxIaBaseSIax
37 eqid S𝑠BaseSI=S𝑠BaseSI
38 eqid mulGrpS𝑠BaseSI=mulGrpS𝑠BaseSI
39 eqid mulGrpS𝑠BaseSI=mulGrpS𝑠BaseSI
40 eqid S𝑠BaseSI=S𝑠BaseSI
41 eqid xIaBaseSIax=xIaBaseSIax
42 1 3 5 14 27 4 37 38 39 40 10 41 6 7 8 9 evlsvval φQF=S𝑠BaseSIbh0I|h-1FinxRBaseSI×xFbS𝑠BaseSImulGrpS𝑠BaseSIbmulGrpS𝑠BaseSIfxIaBaseSIax
43 2 27 evlval O=IevalSubSBaseS
44 43 fveq1i OF=IevalSubSBaseSF
45 eqid IevalSubSBaseS=IevalSubSBaseS
46 eqid ImPolyS𝑠BaseS=ImPolyS𝑠BaseS
47 eqid BaseImPolyS𝑠BaseS=BaseImPolyS𝑠BaseS
48 eqid S𝑠BaseS=S𝑠BaseS
49 7 crngringd φSRing
50 27 subrgid SRingBaseSSubRingS
51 49 50 syl φBaseSSubRingS
52 eqid ImPolyS=ImPolyS
53 eqid BaseImPolyS=BaseImPolyS
54 3 4 5 52 53 6 8 9 mplsubrgcl φFBaseImPolyS
55 27 ressid SCRingS𝑠BaseS=S
56 7 55 syl φS𝑠BaseS=S
57 56 oveq2d φImPolyS𝑠BaseS=ImPolyS
58 57 fveq2d φBaseImPolyS𝑠BaseS=BaseImPolyS
59 54 58 eleqtrrd φFBaseImPolyS𝑠BaseS
60 45 46 47 14 27 48 37 38 39 40 26 41 6 7 51 59 evlsvval φIevalSubSBaseSF=S𝑠BaseSIbh0I|h-1FinxBaseSBaseSI×xFbS𝑠BaseSImulGrpS𝑠BaseSIbmulGrpS𝑠BaseSIfxIaBaseSIax
61 44 60 eqtrid φOF=S𝑠BaseSIbh0I|h-1FinxBaseSBaseSI×xFbS𝑠BaseSImulGrpS𝑠BaseSIbmulGrpS𝑠BaseSIfxIaBaseSIax
62 36 42 61 3eqtr4d φQF=OF