Description: A filter is contained in some ultrafilter. This version of filssufil contains the choice as a hypothesis (in the assumption that ~P ~P X is well-orderable). (Contributed by Mario Carneiro, 24-May-2015) (Revised by Stefan O'Rear, 2-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | filssufilg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |
|
2 | rabss | |
|
3 | filsspw | |
|
4 | velpw | |
|
5 | 3 4 | sylibr | |
6 | 5 | a1d | |
7 | 2 6 | mprgbir | |
8 | ssnum | |
|
9 | 1 7 8 | sylancl | |
10 | ssid | |
|
11 | 10 | jctr | |
12 | sseq2 | |
|
13 | 12 | elrab | |
14 | 11 13 | sylibr | |
15 | 14 | ne0d | |
16 | 15 | adantr | |
17 | sseq2 | |
|
18 | simpr1 | |
|
19 | ssrab | |
|
20 | 18 19 | sylib | |
21 | 20 | simpld | |
22 | simpr2 | |
|
23 | simpr3 | |
|
24 | sorpssun | |
|
25 | 24 | ralrimivva | |
26 | 23 25 | syl | |
27 | filuni | |
|
28 | 21 22 26 27 | syl3anc | |
29 | n0 | |
|
30 | ssel2 | |
|
31 | sseq2 | |
|
32 | 31 | elrab | |
33 | 30 32 | sylib | |
34 | 33 | simprd | |
35 | ssuni | |
|
36 | 34 35 | sylancom | |
37 | 36 | ex | |
38 | 37 | exlimdv | |
39 | 29 38 | biimtrid | |
40 | 18 22 39 | sylc | |
41 | 17 28 40 | elrabd | |
42 | 41 | ex | |
43 | 42 | alrimiv | |
44 | 43 | adantr | |
45 | zornn0g | |
|
46 | 9 16 44 45 | syl3anc | |
47 | sseq2 | |
|
48 | 47 | elrab | |
49 | 31 | ralrab | |
50 | simpll | |
|
51 | sstr2 | |
|
52 | 51 | imim1d | |
53 | df-pss | |
|
54 | 53 | simplbi2 | |
55 | 54 | necon1bd | |
56 | 55 | a2i | |
57 | 52 56 | syl6 | |
58 | 57 | ralimdv | |
59 | 58 | imp | |
60 | 59 | adantll | |
61 | isufil2 | |
|
62 | 50 60 61 | sylanbrc | |
63 | simplr | |
|
64 | 62 63 | jca | |
65 | 48 49 64 | syl2anb | |
66 | 65 | reximi2 | |
67 | 46 66 | syl | |