Metamath Proof Explorer


Theorem filssufilg

Description: A filter is contained in some ultrafilter. This version of filssufil contains the choice as a hypothesis (in the assumption that ~P ~P X is well-orderable). (Contributed by Mario Carneiro, 24-May-2015) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion filssufilg FFilX𝒫𝒫XdomcardfUFilXFf

Proof

Step Hyp Ref Expression
1 simpr FFilX𝒫𝒫Xdomcard𝒫𝒫Xdomcard
2 rabss gFilX|Fg𝒫𝒫XgFilXFgg𝒫𝒫X
3 filsspw gFilXg𝒫X
4 velpw g𝒫𝒫Xg𝒫X
5 3 4 sylibr gFilXg𝒫𝒫X
6 5 a1d gFilXFgg𝒫𝒫X
7 2 6 mprgbir gFilX|Fg𝒫𝒫X
8 ssnum 𝒫𝒫XdomcardgFilX|Fg𝒫𝒫XgFilX|Fgdomcard
9 1 7 8 sylancl FFilX𝒫𝒫XdomcardgFilX|Fgdomcard
10 ssid FF
11 10 jctr FFilXFFilXFF
12 sseq2 g=FFgFF
13 12 elrab FgFilX|FgFFilXFF
14 11 13 sylibr FFilXFgFilX|Fg
15 14 ne0d FFilXgFilX|Fg
16 15 adantr FFilX𝒫𝒫XdomcardgFilX|Fg
17 sseq2 g=xFgFx
18 simpr1 FFilXxgFilX|Fgx[⊂]OrxxgFilX|Fg
19 ssrab xgFilX|FgxFilXgxFg
20 18 19 sylib FFilXxgFilX|Fgx[⊂]OrxxFilXgxFg
21 20 simpld FFilXxgFilX|Fgx[⊂]OrxxFilX
22 simpr2 FFilXxgFilX|Fgx[⊂]Orxx
23 simpr3 FFilXxgFilX|Fgx[⊂]Orx[⊂]Orx
24 sorpssun [⊂]Orxgxhxghx
25 24 ralrimivva [⊂]Orxgxhxghx
26 23 25 syl FFilXxgFilX|Fgx[⊂]Orxgxhxghx
27 filuni xFilXxgxhxghxxFilX
28 21 22 26 27 syl3anc FFilXxgFilX|Fgx[⊂]OrxxFilX
29 n0 xhhx
30 ssel2 xgFilX|FghxhgFilX|Fg
31 sseq2 g=hFgFh
32 31 elrab hgFilX|FghFilXFh
33 30 32 sylib xgFilX|FghxhFilXFh
34 33 simprd xgFilX|FghxFh
35 ssuni FhhxFx
36 34 35 sylancom xgFilX|FghxFx
37 36 ex xgFilX|FghxFx
38 37 exlimdv xgFilX|FghhxFx
39 29 38 biimtrid xgFilX|FgxFx
40 18 22 39 sylc FFilXxgFilX|Fgx[⊂]OrxFx
41 17 28 40 elrabd FFilXxgFilX|Fgx[⊂]OrxxgFilX|Fg
42 41 ex FFilXxgFilX|Fgx[⊂]OrxxgFilX|Fg
43 42 alrimiv FFilXxxgFilX|Fgx[⊂]OrxxgFilX|Fg
44 43 adantr FFilX𝒫𝒫XdomcardxxgFilX|Fgx[⊂]OrxxgFilX|Fg
45 zornn0g gFilX|FgdomcardgFilX|FgxxgFilX|Fgx[⊂]OrxxgFilX|FgfgFilX|FghgFilX|Fg¬fh
46 9 16 44 45 syl3anc FFilX𝒫𝒫XdomcardfgFilX|FghgFilX|Fg¬fh
47 sseq2 g=fFgFf
48 47 elrab fgFilX|FgfFilXFf
49 31 ralrab hgFilX|Fg¬fhhFilXFh¬fh
50 simpll fFilXFfhFilXFh¬fhfFilX
51 sstr2 FffhFh
52 51 imim1d FfFh¬fhfh¬fh
53 df-pss fhfhfh
54 53 simplbi2 fhfhfh
55 54 necon1bd fh¬fhf=h
56 55 a2i fh¬fhfhf=h
57 52 56 syl6 FfFh¬fhfhf=h
58 57 ralimdv FfhFilXFh¬fhhFilXfhf=h
59 58 imp FfhFilXFh¬fhhFilXfhf=h
60 59 adantll fFilXFfhFilXFh¬fhhFilXfhf=h
61 isufil2 fUFilXfFilXhFilXfhf=h
62 50 60 61 sylanbrc fFilXFfhFilXFh¬fhfUFilX
63 simplr fFilXFfhFilXFh¬fhFf
64 62 63 jca fFilXFfhFilXFh¬fhfUFilXFf
65 48 49 64 syl2anb fgFilX|FghgFilX|Fg¬fhfUFilXFf
66 65 reximi2 fgFilX|FghgFilX|Fg¬fhfUFilXFf
67 46 66 syl FFilX𝒫𝒫XdomcardfUFilXFf