Metamath Proof Explorer


Theorem filuni

Description: The union of a nonempty set of filters with a common base and closed under pairwise union is a filter. (Contributed by Mario Carneiro, 28-Nov-2013) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion filuni FFilXFfFgFfgFFFilX

Proof

Step Hyp Ref Expression
1 eluni2 xFfFxf
2 ssel2 FFilXfFfFilX
3 filelss fFilXxfxX
4 3 ex fFilXxfxX
5 2 4 syl FFilXfFxfxX
6 5 rexlimdva FFilXfFxfxX
7 6 3ad2ant1 FFilXFfFgFfgFfFxfxX
8 1 7 biimtrid FFilXFfFgFfgFxFxX
9 8 pm4.71rd FFilXFfFgFfgFxFxXxF
10 ssn0 FFilXFFilX
11 fvprc ¬XVFilX=
12 11 necon1ai FilXXV
13 10 12 syl FFilXFXV
14 13 3adant3 FFilXFfFgFfgFXV
15 filtop fFilXXf
16 2 15 syl FFilXfFXf
17 16 a1d FFilXfFgFfgFXf
18 17 ralimdva FFilXfFgFfgFfFXf
19 r19.2z FfFXffFXf
20 19 ex FfFXffFXf
21 18 20 sylan9 FFilXFfFgFfgFfFXf
22 21 3impia FFilXFfFgFfgFfFXf
23 eluni2 XFfFXf
24 22 23 sylibr FFilXFfFgFfgFXF
25 sbcel1v [˙X/x]˙xFXF
26 24 25 sylibr FFilXFfFgFfgF[˙X/x]˙xF
27 0nelfil fFilX¬f
28 2 27 syl FFilXfF¬f
29 28 ralrimiva FFilXfF¬f
30 29 3ad2ant1 FFilXFfFgFfgFfF¬f
31 sbcel1v [˙/x]˙xFF
32 eluni2 FfFf
33 31 32 bitri [˙/x]˙xFfFf
34 33 notbii ¬[˙/x]˙xF¬fFf
35 ralnex fF¬f¬fFf
36 34 35 bitr4i ¬[˙/x]˙xFfF¬f
37 30 36 sylibr FFilXFfFgFfgF¬[˙/x]˙xF
38 simp13 FFilXFfFgFfgFyXxyfFgFfgF
39 r19.29 fFgFfgFfFxffFgFfgFxf
40 39 ex fFgFfgFfFxffFgFfgFxf
41 38 40 syl FFilXFfFgFfgFyXxyfFxffFgFfgFxf
42 simp1 FFilXFfFgFfgFFFilX
43 simp1 FFilXyXxyFFilX
44 simpl fFgFfgFxffF
45 43 44 2 syl2an FFilXyXxyfFgFfgFxffFilX
46 simprrr FFilXyXxyfFgFfgFxfxf
47 simpl2 FFilXyXxyfFgFfgFxfyX
48 simpl3 FFilXyXxyfFgFfgFxfxy
49 filss fFilXxfyXxyyf
50 45 46 47 48 49 syl13anc FFilXyXxyfFgFfgFxfyf
51 50 expr FFilXyXxyfFgFfgFxfyf
52 51 reximdva FFilXyXxyfFgFfgFxffFyf
53 42 52 syl3an1 FFilXFfFgFfgFyXxyfFgFfgFxffFyf
54 41 53 syld FFilXFfFgFfgFyXxyfFxffFyf
55 sbcel1v [˙x/x]˙xFxF
56 55 1 bitri [˙x/x]˙xFfFxf
57 sbcel1v [˙y/x]˙xFyF
58 eluni2 yFfFyf
59 57 58 bitri [˙y/x]˙xFfFyf
60 54 56 59 3imtr4g FFilXFfFgFfgFyXxy[˙x/x]˙xF[˙y/x]˙xF
61 simp13 FFilXFfFgFfgFyXxXfFgFfgF
62 r19.29 fFgFfgFfFyffFgFfgFyf
63 62 ex fFgFfgFfFyffFgFfgFyf
64 61 63 syl FFilXFfFgFfgFyXxXfFyffFgFfgFyf
65 simp11 FFilXFfFgFfgFyXxXFFilX
66 r19.29 gFfgFgFxggFfgFxg
67 66 ex gFfgFgFxggFfgFxg
68 elun1 yfyfg
69 elun2 xgxfg
70 68 69 anim12i yfxgyfgxfg
71 eleq2 h=fgyhyfg
72 eleq2 h=fgxhxfg
73 71 72 anbi12d h=fgyhxhyfgxfg
74 73 rspcev fgFyfgxfghFyhxh
75 70 74 sylan2 fgFyfxghFyhxh
76 75 an12s yffgFxghFyhxh
77 76 ex yffgFxghFyhxh
78 77 ad2antlr fFyfgFfgFxghFyhxh
79 78 rexlimdva fFyfgFfgFxghFyhxh
80 67 79 syl9r fFyfgFfgFgFxghFyhxh
81 80 impr fFyfgFfgFgFxghFyhxh
82 81 ancom2s fFgFfgFyfgFxghFyhxh
83 82 rexlimiva fFgFfgFyfgFxghFyhxh
84 83 imp fFgFfgFyfgFxghFyhxh
85 ssel2 FFilXhFhFilX
86 filin hFilXyhxhyxh
87 86 3expib hFilXyhxhyxh
88 85 87 syl FFilXhFyhxhyxh
89 88 reximdva FFilXhFyhxhhFyxh
90 65 84 89 syl2im FFilXFfFgFfgFyXxXfFgFfgFyfgFxghFyxh
91 64 90 syland FFilXFfFgFfgFyXxXfFyfgFxghFyxh
92 eluni2 xFgFxg
93 55 92 bitri [˙x/x]˙xFgFxg
94 59 93 anbi12i [˙y/x]˙xF[˙x/x]˙xFfFyfgFxg
95 sbcel1v [˙yx/x]˙xFyxF
96 eluni2 yxFhFyxh
97 95 96 bitri [˙yx/x]˙xFhFyxh
98 91 94 97 3imtr4g FFilXFfFgFfgFyXxX[˙y/x]˙xF[˙x/x]˙xF[˙yx/x]˙xF
99 9 14 26 37 60 98 isfild FFilXFfFgFfgFFFilX