Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Infinity
Eight inequivalent definitions of finite set
fin1a2lem11
Next ⟩
fin1a2lem12
Metamath Proof Explorer
Ascii
Unicode
Theorem
fin1a2lem11
Description:
Lemma for
fin1a2
.
(Contributed by
Stefan O'Rear
, 8-Nov-2014)
Ref
Expression
Assertion
fin1a2lem11
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
→
ran
b
∈
ω
⟼
⋃
c
∈
A
|
c
≼
b
=
A
∪
∅
Proof
Step
Hyp
Ref
Expression
1
eqid
ω
ω
⊢
b
∈
ω
⟼
⋃
c
∈
A
|
c
≼
b
=
b
∈
ω
⟼
⋃
c
∈
A
|
c
≼
b
2
1
rnmpt
ω
ω
⊢
ran
b
∈
ω
⟼
⋃
c
∈
A
|
c
≼
b
=
d
|
∃
b
∈
ω
d
=
⋃
c
∈
A
|
c
≼
b
3
unieq
⊢
c
∈
A
|
c
≼
b
=
∅
→
⋃
c
∈
A
|
c
≼
b
=
⋃
∅
4
uni0
⊢
⋃
∅
=
∅
5
3
4
eqtrdi
⊢
c
∈
A
|
c
≼
b
=
∅
→
⋃
c
∈
A
|
c
≼
b
=
∅
6
5
adantl
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
b
∈
ω
∧
c
∈
A
|
c
≼
b
=
∅
→
⋃
c
∈
A
|
c
≼
b
=
∅
7
0ex
⊢
∅
∈
V
8
7
elsn2
⊢
⋃
c
∈
A
|
c
≼
b
∈
∅
↔
⋃
c
∈
A
|
c
≼
b
=
∅
9
6
8
sylibr
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
b
∈
ω
∧
c
∈
A
|
c
≼
b
=
∅
→
⋃
c
∈
A
|
c
≼
b
∈
∅
10
9
olcd
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
b
∈
ω
∧
c
∈
A
|
c
≼
b
=
∅
→
⋃
c
∈
A
|
c
≼
b
∈
A
∨
⋃
c
∈
A
|
c
≼
b
∈
∅
11
ssrab2
⊢
c
∈
A
|
c
≼
b
⊆
A
12
simpr
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
b
∈
ω
∧
c
∈
A
|
c
≼
b
≠
∅
→
c
∈
A
|
c
≼
b
≠
∅
13
fin1a2lem9
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
b
∈
ω
→
c
∈
A
|
c
≼
b
∈
Fin
14
13
ad4ant123
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
b
∈
ω
∧
c
∈
A
|
c
≼
b
≠
∅
→
c
∈
A
|
c
≼
b
∈
Fin
15
simplll
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
b
∈
ω
∧
c
∈
A
|
c
≼
b
≠
∅
→
[⊂]
Or
A
16
soss
⊢
c
∈
A
|
c
≼
b
⊆
A
→
[⊂]
Or
A
→
[⊂]
Or
c
∈
A
|
c
≼
b
17
11
15
16
mpsyl
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
b
∈
ω
∧
c
∈
A
|
c
≼
b
≠
∅
→
[⊂]
Or
c
∈
A
|
c
≼
b
18
fin1a2lem10
⊢
c
∈
A
|
c
≼
b
≠
∅
∧
c
∈
A
|
c
≼
b
∈
Fin
∧
[⊂]
Or
c
∈
A
|
c
≼
b
→
⋃
c
∈
A
|
c
≼
b
∈
c
∈
A
|
c
≼
b
19
12
14
17
18
syl3anc
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
b
∈
ω
∧
c
∈
A
|
c
≼
b
≠
∅
→
⋃
c
∈
A
|
c
≼
b
∈
c
∈
A
|
c
≼
b
20
11
19
sselid
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
b
∈
ω
∧
c
∈
A
|
c
≼
b
≠
∅
→
⋃
c
∈
A
|
c
≼
b
∈
A
21
20
orcd
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
b
∈
ω
∧
c
∈
A
|
c
≼
b
≠
∅
→
⋃
c
∈
A
|
c
≼
b
∈
A
∨
⋃
c
∈
A
|
c
≼
b
∈
∅
22
10
21
pm2.61dane
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
b
∈
ω
→
⋃
c
∈
A
|
c
≼
b
∈
A
∨
⋃
c
∈
A
|
c
≼
b
∈
∅
23
eleq1
⊢
d
=
⋃
c
∈
A
|
c
≼
b
→
d
∈
A
↔
⋃
c
∈
A
|
c
≼
b
∈
A
24
eleq1
⊢
d
=
⋃
c
∈
A
|
c
≼
b
→
d
∈
∅
↔
⋃
c
∈
A
|
c
≼
b
∈
∅
25
23
24
orbi12d
⊢
d
=
⋃
c
∈
A
|
c
≼
b
→
d
∈
A
∨
d
∈
∅
↔
⋃
c
∈
A
|
c
≼
b
∈
A
∨
⋃
c
∈
A
|
c
≼
b
∈
∅
26
22
25
syl5ibrcom
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
b
∈
ω
→
d
=
⋃
c
∈
A
|
c
≼
b
→
d
∈
A
∨
d
∈
∅
27
26
rexlimdva
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
→
∃
b
∈
ω
d
=
⋃
c
∈
A
|
c
≼
b
→
d
∈
A
∨
d
∈
∅
28
simpr
⊢
[⊂]
Or
A
∧
A
⊆
Fin
→
A
⊆
Fin
29
28
sselda
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
→
d
∈
Fin
30
ficardom
ω
⊢
d
∈
Fin
→
card
d
∈
ω
31
29
30
syl
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
→
card
d
∈
ω
32
breq1
⊢
c
=
d
→
c
≼
card
d
↔
d
≼
card
d
33
simpr
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
→
d
∈
A
34
ficardid
⊢
d
∈
Fin
→
card
d
≈
d
35
29
34
syl
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
→
card
d
≈
d
36
ensym
⊢
card
d
≈
d
→
d
≈
card
d
37
endom
⊢
d
≈
card
d
→
d
≼
card
d
38
35
36
37
3syl
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
→
d
≼
card
d
39
32
33
38
elrabd
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
→
d
∈
c
∈
A
|
c
≼
card
d
40
elssuni
⊢
d
∈
c
∈
A
|
c
≼
card
d
→
d
⊆
⋃
c
∈
A
|
c
≼
card
d
41
39
40
syl
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
→
d
⊆
⋃
c
∈
A
|
c
≼
card
d
42
breq1
⊢
c
=
b
→
c
≼
card
d
↔
b
≼
card
d
43
42
elrab
⊢
b
∈
c
∈
A
|
c
≼
card
d
↔
b
∈
A
∧
b
≼
card
d
44
simprr
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
∧
b
∈
A
∧
b
≼
card
d
→
b
≼
card
d
45
35
adantr
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
∧
b
∈
A
∧
b
≼
card
d
→
card
d
≈
d
46
domentr
⊢
b
≼
card
d
∧
card
d
≈
d
→
b
≼
d
47
44
45
46
syl2anc
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
∧
b
∈
A
∧
b
≼
card
d
→
b
≼
d
48
simpllr
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
∧
b
∈
A
∧
b
≼
card
d
→
A
⊆
Fin
49
simprl
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
∧
b
∈
A
∧
b
≼
card
d
→
b
∈
A
50
48
49
sseldd
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
∧
b
∈
A
∧
b
≼
card
d
→
b
∈
Fin
51
29
adantr
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
∧
b
∈
A
∧
b
≼
card
d
→
d
∈
Fin
52
simplll
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
∧
b
∈
A
∧
b
≼
card
d
→
[⊂]
Or
A
53
simplr
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
∧
b
∈
A
∧
b
≼
card
d
→
d
∈
A
54
sorpssi
⊢
[⊂]
Or
A
∧
b
∈
A
∧
d
∈
A
→
b
⊆
d
∨
d
⊆
b
55
52
49
53
54
syl12anc
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
∧
b
∈
A
∧
b
≼
card
d
→
b
⊆
d
∨
d
⊆
b
56
fincssdom
⊢
b
∈
Fin
∧
d
∈
Fin
∧
b
⊆
d
∨
d
⊆
b
→
b
≼
d
↔
b
⊆
d
57
50
51
55
56
syl3anc
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
∧
b
∈
A
∧
b
≼
card
d
→
b
≼
d
↔
b
⊆
d
58
47
57
mpbid
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
∧
b
∈
A
∧
b
≼
card
d
→
b
⊆
d
59
58
ex
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
→
b
∈
A
∧
b
≼
card
d
→
b
⊆
d
60
43
59
biimtrid
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
→
b
∈
c
∈
A
|
c
≼
card
d
→
b
⊆
d
61
60
ralrimiv
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
→
∀
b
∈
c
∈
A
|
c
≼
card
d
b
⊆
d
62
unissb
⊢
⋃
c
∈
A
|
c
≼
card
d
⊆
d
↔
∀
b
∈
c
∈
A
|
c
≼
card
d
b
⊆
d
63
61
62
sylibr
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
→
⋃
c
∈
A
|
c
≼
card
d
⊆
d
64
41
63
eqssd
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
→
d
=
⋃
c
∈
A
|
c
≼
card
d
65
breq2
⊢
b
=
card
d
→
c
≼
b
↔
c
≼
card
d
66
65
rabbidv
⊢
b
=
card
d
→
c
∈
A
|
c
≼
b
=
c
∈
A
|
c
≼
card
d
67
66
unieqd
⊢
b
=
card
d
→
⋃
c
∈
A
|
c
≼
b
=
⋃
c
∈
A
|
c
≼
card
d
68
67
rspceeqv
ω
ω
⊢
card
d
∈
ω
∧
d
=
⋃
c
∈
A
|
c
≼
card
d
→
∃
b
∈
ω
d
=
⋃
c
∈
A
|
c
≼
b
69
31
64
68
syl2anc
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
∧
d
∈
A
→
∃
b
∈
ω
d
=
⋃
c
∈
A
|
c
≼
b
70
69
ex
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
→
d
∈
A
→
∃
b
∈
ω
d
=
⋃
c
∈
A
|
c
≼
b
71
velsn
⊢
d
∈
∅
↔
d
=
∅
72
peano1
ω
⊢
∅
∈
ω
73
dom0
⊢
b
≼
∅
↔
b
=
∅
74
73
biimpi
⊢
b
≼
∅
→
b
=
∅
75
74
adantl
⊢
b
∈
A
∧
b
≼
∅
→
b
=
∅
76
75
a1i
⊢
[⊂]
Or
A
∧
A
⊆
Fin
→
b
∈
A
∧
b
≼
∅
→
b
=
∅
77
breq1
⊢
c
=
b
→
c
≼
∅
↔
b
≼
∅
78
77
elrab
⊢
b
∈
c
∈
A
|
c
≼
∅
↔
b
∈
A
∧
b
≼
∅
79
velsn
⊢
b
∈
∅
↔
b
=
∅
80
76
78
79
3imtr4g
⊢
[⊂]
Or
A
∧
A
⊆
Fin
→
b
∈
c
∈
A
|
c
≼
∅
→
b
∈
∅
81
80
ssrdv
⊢
[⊂]
Or
A
∧
A
⊆
Fin
→
c
∈
A
|
c
≼
∅
⊆
∅
82
uni0b
⊢
⋃
c
∈
A
|
c
≼
∅
=
∅
↔
c
∈
A
|
c
≼
∅
⊆
∅
83
81
82
sylibr
⊢
[⊂]
Or
A
∧
A
⊆
Fin
→
⋃
c
∈
A
|
c
≼
∅
=
∅
84
83
eqcomd
⊢
[⊂]
Or
A
∧
A
⊆
Fin
→
∅
=
⋃
c
∈
A
|
c
≼
∅
85
breq2
⊢
b
=
∅
→
c
≼
b
↔
c
≼
∅
86
85
rabbidv
⊢
b
=
∅
→
c
∈
A
|
c
≼
b
=
c
∈
A
|
c
≼
∅
87
86
unieqd
⊢
b
=
∅
→
⋃
c
∈
A
|
c
≼
b
=
⋃
c
∈
A
|
c
≼
∅
88
87
rspceeqv
ω
ω
⊢
∅
∈
ω
∧
∅
=
⋃
c
∈
A
|
c
≼
∅
→
∃
b
∈
ω
∅
=
⋃
c
∈
A
|
c
≼
b
89
72
84
88
sylancr
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
→
∃
b
∈
ω
∅
=
⋃
c
∈
A
|
c
≼
b
90
eqeq1
⊢
d
=
∅
→
d
=
⋃
c
∈
A
|
c
≼
b
↔
∅
=
⋃
c
∈
A
|
c
≼
b
91
90
rexbidv
ω
ω
⊢
d
=
∅
→
∃
b
∈
ω
d
=
⋃
c
∈
A
|
c
≼
b
↔
∃
b
∈
ω
∅
=
⋃
c
∈
A
|
c
≼
b
92
89
91
syl5ibrcom
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
→
d
=
∅
→
∃
b
∈
ω
d
=
⋃
c
∈
A
|
c
≼
b
93
71
92
biimtrid
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
→
d
∈
∅
→
∃
b
∈
ω
d
=
⋃
c
∈
A
|
c
≼
b
94
70
93
jaod
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
→
d
∈
A
∨
d
∈
∅
→
∃
b
∈
ω
d
=
⋃
c
∈
A
|
c
≼
b
95
27
94
impbid
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
→
∃
b
∈
ω
d
=
⋃
c
∈
A
|
c
≼
b
↔
d
∈
A
∨
d
∈
∅
96
elun
⊢
d
∈
A
∪
∅
↔
d
∈
A
∨
d
∈
∅
97
95
96
bitr4di
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
→
∃
b
∈
ω
d
=
⋃
c
∈
A
|
c
≼
b
↔
d
∈
A
∪
∅
98
97
eqabcdv
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
→
d
|
∃
b
∈
ω
d
=
⋃
c
∈
A
|
c
≼
b
=
A
∪
∅
99
2
98
eqtrid
ω
⊢
[⊂]
Or
A
∧
A
⊆
Fin
→
ran
b
∈
ω
⟼
⋃
c
∈
A
|
c
≼
b
=
A
∪
∅