Metamath Proof Explorer


Theorem fin1a2lem11

Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 8-Nov-2014)

Ref Expression
Assertion fin1a2lem11 [⊂]OrAAFinranbωcA|cb=A

Proof

Step Hyp Ref Expression
1 eqid bωcA|cb=bωcA|cb
2 1 rnmpt ranbωcA|cb=d|bωd=cA|cb
3 unieq cA|cb=cA|cb=
4 uni0 =
5 3 4 eqtrdi cA|cb=cA|cb=
6 5 adantl [⊂]OrAAFinbωcA|cb=cA|cb=
7 0ex V
8 7 elsn2 cA|cbcA|cb=
9 6 8 sylibr [⊂]OrAAFinbωcA|cb=cA|cb
10 9 olcd [⊂]OrAAFinbωcA|cb=cA|cbAcA|cb
11 ssrab2 cA|cbA
12 simpr [⊂]OrAAFinbωcA|cbcA|cb
13 fin1a2lem9 [⊂]OrAAFinbωcA|cbFin
14 13 ad4ant123 [⊂]OrAAFinbωcA|cbcA|cbFin
15 simplll [⊂]OrAAFinbωcA|cb[⊂]OrA
16 soss cA|cbA[⊂]OrA[⊂]OrcA|cb
17 11 15 16 mpsyl [⊂]OrAAFinbωcA|cb[⊂]OrcA|cb
18 fin1a2lem10 cA|cbcA|cbFin[⊂]OrcA|cbcA|cbcA|cb
19 12 14 17 18 syl3anc [⊂]OrAAFinbωcA|cbcA|cbcA|cb
20 11 19 sselid [⊂]OrAAFinbωcA|cbcA|cbA
21 20 orcd [⊂]OrAAFinbωcA|cbcA|cbAcA|cb
22 10 21 pm2.61dane [⊂]OrAAFinbωcA|cbAcA|cb
23 eleq1 d=cA|cbdAcA|cbA
24 eleq1 d=cA|cbdcA|cb
25 23 24 orbi12d d=cA|cbdAdcA|cbAcA|cb
26 22 25 syl5ibrcom [⊂]OrAAFinbωd=cA|cbdAd
27 26 rexlimdva [⊂]OrAAFinbωd=cA|cbdAd
28 simpr [⊂]OrAAFinAFin
29 28 sselda [⊂]OrAAFindAdFin
30 ficardom dFincarddω
31 29 30 syl [⊂]OrAAFindAcarddω
32 breq1 c=dccardddcardd
33 simpr [⊂]OrAAFindAdA
34 ficardid dFincarddd
35 29 34 syl [⊂]OrAAFindAcarddd
36 ensym carddddcardd
37 endom dcardddcardd
38 35 36 37 3syl [⊂]OrAAFindAdcardd
39 32 33 38 elrabd [⊂]OrAAFindAdcA|ccardd
40 elssuni dcA|ccardddcA|ccardd
41 39 40 syl [⊂]OrAAFindAdcA|ccardd
42 breq1 c=bccarddbcardd
43 42 elrab bcA|ccarddbAbcardd
44 simprr [⊂]OrAAFindAbAbcarddbcardd
45 35 adantr [⊂]OrAAFindAbAbcarddcarddd
46 domentr bcarddcardddbd
47 44 45 46 syl2anc [⊂]OrAAFindAbAbcarddbd
48 simpllr [⊂]OrAAFindAbAbcarddAFin
49 simprl [⊂]OrAAFindAbAbcarddbA
50 48 49 sseldd [⊂]OrAAFindAbAbcarddbFin
51 29 adantr [⊂]OrAAFindAbAbcardddFin
52 simplll [⊂]OrAAFindAbAbcardd[⊂]OrA
53 simplr [⊂]OrAAFindAbAbcardddA
54 sorpssi [⊂]OrAbAdAbddb
55 52 49 53 54 syl12anc [⊂]OrAAFindAbAbcarddbddb
56 fincssdom bFindFinbddbbdbd
57 50 51 55 56 syl3anc [⊂]OrAAFindAbAbcarddbdbd
58 47 57 mpbid [⊂]OrAAFindAbAbcarddbd
59 58 ex [⊂]OrAAFindAbAbcarddbd
60 43 59 biimtrid [⊂]OrAAFindAbcA|ccarddbd
61 60 ralrimiv [⊂]OrAAFindAbcA|ccarddbd
62 unissb cA|ccardddbcA|ccarddbd
63 61 62 sylibr [⊂]OrAAFindAcA|ccarddd
64 41 63 eqssd [⊂]OrAAFindAd=cA|ccardd
65 breq2 b=carddcbccardd
66 65 rabbidv b=carddcA|cb=cA|ccardd
67 66 unieqd b=carddcA|cb=cA|ccardd
68 67 rspceeqv carddωd=cA|ccarddbωd=cA|cb
69 31 64 68 syl2anc [⊂]OrAAFindAbωd=cA|cb
70 69 ex [⊂]OrAAFindAbωd=cA|cb
71 velsn dd=
72 peano1 ω
73 dom0 bb=
74 73 biimpi bb=
75 74 adantl bAbb=
76 75 a1i [⊂]OrAAFinbAbb=
77 breq1 c=bcb
78 77 elrab bcA|cbAb
79 velsn bb=
80 76 78 79 3imtr4g [⊂]OrAAFinbcA|cb
81 80 ssrdv [⊂]OrAAFincA|c
82 uni0b cA|c=cA|c
83 81 82 sylibr [⊂]OrAAFincA|c=
84 83 eqcomd [⊂]OrAAFin=cA|c
85 breq2 b=cbc
86 85 rabbidv b=cA|cb=cA|c
87 86 unieqd b=cA|cb=cA|c
88 87 rspceeqv ω=cA|cbω=cA|cb
89 72 84 88 sylancr [⊂]OrAAFinbω=cA|cb
90 eqeq1 d=d=cA|cb=cA|cb
91 90 rexbidv d=bωd=cA|cbbω=cA|cb
92 89 91 syl5ibrcom [⊂]OrAAFind=bωd=cA|cb
93 71 92 biimtrid [⊂]OrAAFindbωd=cA|cb
94 70 93 jaod [⊂]OrAAFindAdbωd=cA|cb
95 27 94 impbid [⊂]OrAAFinbωd=cA|cbdAd
96 elun dAdAd
97 95 96 bitr4di [⊂]OrAAFinbωd=cA|cbdA
98 97 eqabcdv [⊂]OrAAFind|bωd=cA|cb=A
99 2 98 eqtrid [⊂]OrAAFinranbωcA|cb=A