Metamath Proof Explorer


Theorem fin1a2lem12

Description: Lemma for fin1a2 . (Contributed by Stefan O'Rear, 8-Nov-2014) (Revised by Mario Carneiro, 17-May-2015)

Ref Expression
Assertion fin1a2lem12 A𝒫B[⊂]OrA¬AAAFinA¬BFinIII

Proof

Step Hyp Ref Expression
1 simpr A𝒫B[⊂]OrA¬AAAFinABFinIIIBFinIII
2 simpll1 A𝒫B[⊂]OrA¬AAAFinABFinIIIA𝒫B
3 2 adantr A𝒫B[⊂]OrA¬AAAFinABFinIIIeωA𝒫B
4 ssrab2 fA|feA
5 4 unissi fA|feA
6 sspwuni A𝒫BAB
7 6 biimpi A𝒫BAB
8 5 7 sstrid A𝒫BfA|feB
9 3 8 syl A𝒫B[⊂]OrA¬AAAFinABFinIIIeωfA|feB
10 elpw2g BFinIIIfA|fe𝒫BfA|feB
11 10 ad2antlr A𝒫B[⊂]OrA¬AAAFinABFinIIIeωfA|fe𝒫BfA|feB
12 9 11 mpbird A𝒫B[⊂]OrA¬AAAFinABFinIIIeωfA|fe𝒫B
13 12 fmpttd A𝒫B[⊂]OrA¬AAAFinABFinIIIeωfA|fe:ω𝒫B
14 vex dV
15 14 sucex sucdV
16 sssucid dsucd
17 ssdomg sucdVdsucddsucd
18 15 16 17 mp2 dsucd
19 domtr fddsucdfsucd
20 18 19 mpan2 fdfsucd
21 20 a1i fAfdfsucd
22 21 ss2rabi fA|fdfA|fsucd
23 uniss fA|fdfA|fsucdfA|fdfA|fsucd
24 22 23 mp1i A𝒫B[⊂]OrA¬AAAFinABFinIIIdωfA|fdfA|fsucd
25 id dωdω
26 pwexg BFinIII𝒫BV
27 26 adantl A𝒫B[⊂]OrA¬AAAFinABFinIII𝒫BV
28 27 2 ssexd A𝒫B[⊂]OrA¬AAAFinABFinIIIAV
29 rabexg AVfA|fdV
30 uniexg fA|fdVfA|fdV
31 28 29 30 3syl A𝒫B[⊂]OrA¬AAAFinABFinIIIfA|fdV
32 breq2 e=dfefd
33 32 rabbidv e=dfA|fe=fA|fd
34 33 unieqd e=dfA|fe=fA|fd
35 eqid eωfA|fe=eωfA|fe
36 34 35 fvmptg dωfA|fdVeωfA|fed=fA|fd
37 25 31 36 syl2anr A𝒫B[⊂]OrA¬AAAFinABFinIIIdωeωfA|fed=fA|fd
38 peano2 dωsucdω
39 rabexg AVfA|fsucdV
40 uniexg fA|fsucdVfA|fsucdV
41 28 39 40 3syl A𝒫B[⊂]OrA¬AAAFinABFinIIIfA|fsucdV
42 breq2 e=sucdfefsucd
43 42 rabbidv e=sucdfA|fe=fA|fsucd
44 43 unieqd e=sucdfA|fe=fA|fsucd
45 44 35 fvmptg sucdωfA|fsucdVeωfA|fesucd=fA|fsucd
46 38 41 45 syl2anr A𝒫B[⊂]OrA¬AAAFinABFinIIIdωeωfA|fesucd=fA|fsucd
47 24 37 46 3sstr4d A𝒫B[⊂]OrA¬AAAFinABFinIIIdωeωfA|fedeωfA|fesucd
48 47 ralrimiva A𝒫B[⊂]OrA¬AAAFinABFinIIIdωeωfA|fedeωfA|fesucd
49 fin34i BFinIIIeωfA|fe:ω𝒫BdωeωfA|fedeωfA|fesucdraneωfA|feraneωfA|fe
50 1 13 48 49 syl3anc A𝒫B[⊂]OrA¬AAAFinABFinIIIraneωfA|feraneωfA|fe
51 fin1a2lem11 [⊂]OrAAFinraneωfA|fe=A
52 51 adantrr [⊂]OrAAFinAraneωfA|fe=A
53 52 3ad2antl2 A𝒫B[⊂]OrA¬AAAFinAraneωfA|fe=A
54 53 adantr A𝒫B[⊂]OrA¬AAAFinABFinIIIraneωfA|fe=A
55 simpll3 A𝒫B[⊂]OrA¬AAAFinABFinIII¬AA
56 simplrr A𝒫B[⊂]OrA¬AAAFinABFinIIIA
57 sspwuni A𝒫A
58 ss0b AA=
59 57 58 bitri A𝒫A=
60 pw0 𝒫=
61 60 sseq2i A𝒫A
62 sssn AA=A=
63 61 62 bitri A𝒫A=A=
64 df-ne A¬A=
65 0ex V
66 65 unisn =
67 65 snid
68 66 67 eqeltri
69 unieq A=A=
70 id A=A=
71 69 70 eleq12d A=AA
72 68 71 mpbiri A=AA
73 72 orim2i A=A=A=AA
74 73 ord A=A=¬A=AA
75 64 74 biimtrid A=A=AAA
76 63 75 sylbi A𝒫AAA
77 59 76 sylbir A=AAA
78 77 com12 AA=AA
79 78 con3d A¬AA¬A=
80 56 55 79 sylc A𝒫B[⊂]OrA¬AAAFinABFinIII¬A=
81 ioran ¬AAA=¬AA¬A=
82 55 80 81 sylanbrc A𝒫B[⊂]OrA¬AAAFinABFinIII¬AAA=
83 uniun A=A
84 66 uneq2i A=A
85 un0 A=A
86 83 84 85 3eqtri A=A
87 86 eleq1i AAAA
88 elun AAAAA
89 65 elsn2 AA=
90 89 orbi2i AAAAAA=
91 87 88 90 3bitri AAAAA=
92 82 91 sylnibr A𝒫B[⊂]OrA¬AAAFinABFinIII¬AA
93 unieq raneωfA|fe=AraneωfA|fe=A
94 id raneωfA|fe=AraneωfA|fe=A
95 93 94 eleq12d raneωfA|fe=AraneωfA|feraneωfA|feAA
96 95 notbid raneωfA|fe=A¬raneωfA|feraneωfA|fe¬AA
97 92 96 syl5ibrcom A𝒫B[⊂]OrA¬AAAFinABFinIIIraneωfA|fe=A¬raneωfA|feraneωfA|fe
98 54 97 mpd A𝒫B[⊂]OrA¬AAAFinABFinIII¬raneωfA|feraneωfA|fe
99 50 98 pm2.65da A𝒫B[⊂]OrA¬AAAFinA¬BFinIII