| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sumvtxdg2size.v |
|
| 2 |
|
sumvtxdg2size.i |
|
| 3 |
|
sumvtxdg2size.d |
|
| 4 |
|
upgrop |
|
| 5 |
|
fvex |
|
| 6 |
|
fvex |
|
| 7 |
6
|
resex |
|
| 8 |
|
eleq1 |
|
| 9 |
8
|
adantl |
|
| 10 |
|
simpl |
|
| 11 |
|
oveq12 |
|
| 12 |
11
|
fveq1d |
|
| 13 |
12
|
adantr |
|
| 14 |
10 13
|
sumeq12dv |
|
| 15 |
|
fveq2 |
|
| 16 |
15
|
oveq2d |
|
| 17 |
16
|
adantl |
|
| 18 |
14 17
|
eqeq12d |
|
| 19 |
9 18
|
imbi12d |
|
| 20 |
|
eleq1 |
|
| 21 |
20
|
adantl |
|
| 22 |
|
simpl |
|
| 23 |
|
oveq12 |
|
| 24 |
|
df-ov |
|
| 25 |
23 24
|
eqtrdi |
|
| 26 |
25
|
fveq1d |
|
| 27 |
26
|
adantr |
|
| 28 |
22 27
|
sumeq12dv |
|
| 29 |
|
fveq2 |
|
| 30 |
29
|
oveq2d |
|
| 31 |
30
|
adantl |
|
| 32 |
28 31
|
eqeq12d |
|
| 33 |
21 32
|
imbi12d |
|
| 34 |
|
vex |
|
| 35 |
|
vex |
|
| 36 |
34 35
|
opvtxfvi |
|
| 37 |
36
|
eqcomi |
|
| 38 |
|
eqid |
|
| 39 |
|
eqid |
|
| 40 |
|
eqid |
|
| 41 |
37 38 39 40
|
upgrres |
|
| 42 |
|
eleq1 |
|
| 43 |
42
|
adantl |
|
| 44 |
|
simpl |
|
| 45 |
|
opeq12 |
|
| 46 |
45
|
fveq2d |
|
| 47 |
46
|
fveq1d |
|
| 48 |
47
|
adantr |
|
| 49 |
44 48
|
sumeq12dv |
|
| 50 |
|
fveq2 |
|
| 51 |
50
|
oveq2d |
|
| 52 |
51
|
adantl |
|
| 53 |
49 52
|
eqeq12d |
|
| 54 |
43 53
|
imbi12d |
|
| 55 |
|
hasheq0 |
|
| 56 |
55
|
elv |
|
| 57 |
|
2t0e0 |
|
| 58 |
57
|
a1i |
|
| 59 |
34 35
|
opiedgfvi |
|
| 60 |
59
|
eqcomi |
|
| 61 |
|
upgruhgr |
|
| 62 |
61
|
adantr |
|
| 63 |
37
|
eqeq1i |
|
| 64 |
|
uhgr0vb |
|
| 65 |
63 64
|
sylan2b |
|
| 66 |
62 65
|
mpbid |
|
| 67 |
60 66
|
eqtrid |
|
| 68 |
|
hasheq0 |
|
| 69 |
68
|
elv |
|
| 70 |
67 69
|
sylibr |
|
| 71 |
70
|
oveq2d |
|
| 72 |
|
sumeq1 |
|
| 73 |
|
sum0 |
|
| 74 |
72 73
|
eqtrdi |
|
| 75 |
74
|
adantl |
|
| 76 |
58 71 75
|
3eqtr4rd |
|
| 77 |
56 76
|
sylan2b |
|
| 78 |
77
|
a1d |
|
| 79 |
|
eleq1 |
|
| 80 |
79
|
eqcoms |
|
| 81 |
80
|
3ad2ant2 |
|
| 82 |
|
hashclb |
|
| 83 |
82
|
biimprd |
|
| 84 |
83
|
elv |
|
| 85 |
|
eqid |
|
| 86 |
|
eqid |
|
| 87 |
59
|
dmeqi |
|
| 88 |
87
|
rabeqi |
|
| 89 |
|
eqidd |
|
| 90 |
59
|
a1i |
|
| 91 |
90
|
fveq1d |
|
| 92 |
89 91
|
neleq12d |
|
| 93 |
92
|
rabbiia |
|
| 94 |
88 93
|
eqtri |
|
| 95 |
59 94
|
reseq12i |
|
| 96 |
37 60 85 86 95 40
|
finsumvtxdg2sstep |
|
| 97 |
|
df-ov |
|
| 98 |
97
|
fveq1i |
|
| 99 |
98
|
a1i |
|
| 100 |
99
|
sumeq2i |
|
| 101 |
100
|
eqeq1i |
|
| 102 |
96 101
|
imbitrrdi |
|
| 103 |
102
|
exp32 |
|
| 104 |
103
|
com34 |
|
| 105 |
104
|
3adant2 |
|
| 106 |
84 105
|
syl5 |
|
| 107 |
81 106
|
sylbid |
|
| 108 |
107
|
impcom |
|
| 109 |
108
|
imp |
|
| 110 |
5 7 19 33 41 54 78 109
|
opfi1ind |
|
| 111 |
110
|
ex |
|
| 112 |
4 111
|
syl |
|
| 113 |
1
|
eleq1i |
|
| 114 |
113
|
a1i |
|
| 115 |
2
|
eleq1i |
|
| 116 |
115
|
a1i |
|
| 117 |
1
|
a1i |
|
| 118 |
|
vtxdgop |
|
| 119 |
3 118
|
eqtrid |
|
| 120 |
119
|
fveq1d |
|
| 121 |
120
|
adantr |
|
| 122 |
117 121
|
sumeq12dv |
|
| 123 |
2
|
fveq2i |
|
| 124 |
123
|
oveq2i |
|
| 125 |
124
|
a1i |
|
| 126 |
122 125
|
eqeq12d |
|
| 127 |
116 126
|
imbi12d |
|
| 128 |
112 114 127
|
3imtr4d |
|
| 129 |
128
|
3imp |
|