Metamath Proof Explorer


Theorem flimrest

Description: The set of limit points in a restricted topological space. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion flimrest JTopOnXFFilXYFJ𝑡YfLimF𝑡Y=JfLimFY

Proof

Step Hyp Ref Expression
1 simp1 JTopOnXFFilXYFJTopOnX
2 filelss FFilXYFYX
3 2 3adant1 JTopOnXFFilXYFYX
4 resttopon JTopOnXYXJ𝑡YTopOnY
5 1 3 4 syl2anc JTopOnXFFilXYFJ𝑡YTopOnY
6 filfbas FFilXFfBasX
7 6 3ad2ant2 JTopOnXFFilXYFFfBasX
8 simp3 JTopOnXFFilXYFYF
9 fbncp FfBasXYF¬XYF
10 7 8 9 syl2anc JTopOnXFFilXYF¬XYF
11 simp2 JTopOnXFFilXYFFFilX
12 trfil3 FFilXYXF𝑡YFilY¬XYF
13 11 3 12 syl2anc JTopOnXFFilXYFF𝑡YFilY¬XYF
14 10 13 mpbird JTopOnXFFilXYFF𝑡YFilY
15 flimopn J𝑡YTopOnYF𝑡YFilYxJ𝑡YfLimF𝑡YxYyJ𝑡YxyyF𝑡Y
16 5 14 15 syl2anc JTopOnXFFilXYFxJ𝑡YfLimF𝑡YxYyJ𝑡YxyyF𝑡Y
17 simpll2 JTopOnXFFilXYFxYzJFFilX
18 simpll3 JTopOnXFFilXYFxYzJYF
19 elrestr FFilXYFzFzYF𝑡Y
20 19 3expia FFilXYFzFzYF𝑡Y
21 17 18 20 syl2anc JTopOnXFFilXYFxYzJzFzYF𝑡Y
22 trfilss FFilXYFF𝑡YF
23 17 18 22 syl2anc JTopOnXFFilXYFxYzJF𝑡YF
24 23 sseld JTopOnXFFilXYFxYzJzYF𝑡YzYF
25 inss1 zYz
26 25 a1i JTopOnXFFilXYFxYzJzYz
27 simpl1 JTopOnXFFilXYFxYJTopOnX
28 toponss JTopOnXzJzX
29 27 28 sylan JTopOnXFFilXYFxYzJzX
30 filss FFilXzYFzXzYzzF
31 30 3exp2 FFilXzYFzXzYzzF
32 31 com24 FFilXzYzzXzYFzF
33 17 26 29 32 syl3c JTopOnXFFilXYFxYzJzYFzF
34 24 33 syld JTopOnXFFilXYFxYzJzYF𝑡YzF
35 21 34 impbid JTopOnXFFilXYFxYzJzFzYF𝑡Y
36 35 imbi2d JTopOnXFFilXYFxYzJxzzFxzzYF𝑡Y
37 36 ralbidva JTopOnXFFilXYFxYzJxzzFzJxzzYF𝑡Y
38 simpl2 JTopOnXFFilXYFxYFFilX
39 3 sselda JTopOnXFFilXYFxYxX
40 flimopn JTopOnXFFilXxJfLimFxXzJxzzF
41 40 baibd JTopOnXFFilXxXxJfLimFzJxzzF
42 27 38 39 41 syl21anc JTopOnXFFilXYFxYxJfLimFzJxzzF
43 vex zV
44 43 inex1 zYV
45 44 a1i JTopOnXFFilXYFxYzJzYV
46 simpl3 JTopOnXFFilXYFxYYF
47 elrest JTopOnXYFyJ𝑡YzJy=zY
48 27 46 47 syl2anc JTopOnXFFilXYFxYyJ𝑡YzJy=zY
49 eleq2 y=zYxyxzY
50 elin xzYxzxY
51 50 rbaib xYxzYxz
52 51 adantl JTopOnXFFilXYFxYxzYxz
53 49 52 sylan9bbr JTopOnXFFilXYFxYy=zYxyxz
54 eleq1 y=zYyF𝑡YzYF𝑡Y
55 54 adantl JTopOnXFFilXYFxYy=zYyF𝑡YzYF𝑡Y
56 53 55 imbi12d JTopOnXFFilXYFxYy=zYxyyF𝑡YxzzYF𝑡Y
57 45 48 56 ralxfr2d JTopOnXFFilXYFxYyJ𝑡YxyyF𝑡YzJxzzYF𝑡Y
58 37 42 57 3bitr4d JTopOnXFFilXYFxYxJfLimFyJ𝑡YxyyF𝑡Y
59 58 pm5.32da JTopOnXFFilXYFxYxJfLimFxYyJ𝑡YxyyF𝑡Y
60 16 59 bitr4d JTopOnXFFilXYFxJ𝑡YfLimF𝑡YxYxJfLimF
61 ancom xYxJfLimFxJfLimFxY
62 elin xJfLimFYxJfLimFxY
63 61 62 bitr4i xYxJfLimFxJfLimFY
64 60 63 bitrdi JTopOnXFFilXYFxJ𝑡YfLimF𝑡YxJfLimFY
65 64 eqrdv JTopOnXFFilXYFJ𝑡YfLimF𝑡Y=JfLimFY