Description: The set of limit points in a restricted topological space. (Contributed by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | flimrest | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 | |
|
2 | filelss | |
|
3 | 2 | 3adant1 | |
4 | resttopon | |
|
5 | 1 3 4 | syl2anc | |
6 | filfbas | |
|
7 | 6 | 3ad2ant2 | |
8 | simp3 | |
|
9 | fbncp | |
|
10 | 7 8 9 | syl2anc | |
11 | simp2 | |
|
12 | trfil3 | |
|
13 | 11 3 12 | syl2anc | |
14 | 10 13 | mpbird | |
15 | flimopn | |
|
16 | 5 14 15 | syl2anc | |
17 | simpll2 | |
|
18 | simpll3 | |
|
19 | elrestr | |
|
20 | 19 | 3expia | |
21 | 17 18 20 | syl2anc | |
22 | trfilss | |
|
23 | 17 18 22 | syl2anc | |
24 | 23 | sseld | |
25 | inss1 | |
|
26 | 25 | a1i | |
27 | simpl1 | |
|
28 | toponss | |
|
29 | 27 28 | sylan | |
30 | filss | |
|
31 | 30 | 3exp2 | |
32 | 31 | com24 | |
33 | 17 26 29 32 | syl3c | |
34 | 24 33 | syld | |
35 | 21 34 | impbid | |
36 | 35 | imbi2d | |
37 | 36 | ralbidva | |
38 | simpl2 | |
|
39 | 3 | sselda | |
40 | flimopn | |
|
41 | 40 | baibd | |
42 | 27 38 39 41 | syl21anc | |
43 | vex | |
|
44 | 43 | inex1 | |
45 | 44 | a1i | |
46 | simpl3 | |
|
47 | elrest | |
|
48 | 27 46 47 | syl2anc | |
49 | eleq2 | |
|
50 | elin | |
|
51 | 50 | rbaib | |
52 | 51 | adantl | |
53 | 49 52 | sylan9bbr | |
54 | eleq1 | |
|
55 | 54 | adantl | |
56 | 53 55 | imbi12d | |
57 | 45 48 56 | ralxfr2d | |
58 | 37 42 57 | 3bitr4d | |
59 | 58 | pm5.32da | |
60 | 16 59 | bitr4d | |
61 | ancom | |
|
62 | elin | |
|
63 | 61 62 | bitr4i | |
64 | 60 63 | bitrdi | |
65 | 64 | eqrdv | |