Metamath Proof Explorer


Theorem flimclslem

Description: Lemma for flimcls . (Contributed by Mario Carneiro, 9-Apr-2015) (Revised by Stefan O'Rear, 6-Aug-2015)

Ref Expression
Hypothesis flimcls.2 F=XfilGenfineiJAS
Assertion flimclslem JTopOnXSXAclsJSFFilXSFAJfLimF

Proof

Step Hyp Ref Expression
1 flimcls.2 F=XfilGenfineiJAS
2 topontop JTopOnXJTop
3 2 3ad2ant1 JTopOnXSXAclsJSJTop
4 eqid J=J
5 4 neisspw JTopneiJA𝒫J
6 3 5 syl JTopOnXSXAclsJSneiJA𝒫J
7 toponuni JTopOnXX=J
8 7 3ad2ant1 JTopOnXSXAclsJSX=J
9 8 pweqd JTopOnXSXAclsJS𝒫X=𝒫J
10 6 9 sseqtrrd JTopOnXSXAclsJSneiJA𝒫X
11 toponmax JTopOnXXJ
12 elpw2g XJS𝒫XSX
13 11 12 syl JTopOnXS𝒫XSX
14 13 biimpar JTopOnXSXS𝒫X
15 14 3adant3 JTopOnXSXAclsJSS𝒫X
16 15 snssd JTopOnXSXAclsJSS𝒫X
17 10 16 unssd JTopOnXSXAclsJSneiJAS𝒫X
18 ssun2 SneiJAS
19 11 3ad2ant1 JTopOnXSXAclsJSXJ
20 simp2 JTopOnXSXAclsJSSX
21 19 20 ssexd JTopOnXSXAclsJSSV
22 21 snn0d JTopOnXSXAclsJSS
23 ssn0 SneiJASSneiJAS
24 18 22 23 sylancr JTopOnXSXAclsJSneiJAS
25 20 8 sseqtrd JTopOnXSXAclsJSSJ
26 simp3 JTopOnXSXAclsJSAclsJS
27 4 neindisj JTopSJAclsJSxneiJAxS
28 27 expr JTopSJAclsJSxneiJAxS
29 3 25 26 28 syl21anc JTopOnXSXAclsJSxneiJAxS
30 29 imp JTopOnXSXAclsJSxneiJAxS
31 elsni ySy=S
32 31 ineq2d ySxy=xS
33 32 neeq1d ySxyxS
34 30 33 syl5ibrcom JTopOnXSXAclsJSxneiJAySxy
35 34 ralrimiv JTopOnXSXAclsJSxneiJAySxy
36 35 ralrimiva JTopOnXSXAclsJSxneiJAySxy
37 simp1 JTopOnXSXAclsJSJTopOnX
38 4 clsss3 JTopSJclsJSJ
39 3 25 38 syl2anc JTopOnXSXAclsJSclsJSJ
40 39 26 sseldd JTopOnXSXAclsJSAJ
41 40 8 eleqtrrd JTopOnXSXAclsJSAX
42 41 snssd JTopOnXSXAclsJSAX
43 snnzg AclsJSA
44 43 3ad2ant3 JTopOnXSXAclsJSA
45 neifil JTopOnXAXAneiJAFilX
46 37 42 44 45 syl3anc JTopOnXSXAclsJSneiJAFilX
47 filfbas neiJAFilXneiJAfBasX
48 46 47 syl JTopOnXSXAclsJSneiJAfBasX
49 ne0i AclsJSclsJS
50 49 3ad2ant3 JTopOnXSXAclsJSclsJS
51 cls0 JTopclsJ=
52 3 51 syl JTopOnXSXAclsJSclsJ=
53 50 52 neeqtrrd JTopOnXSXAclsJSclsJSclsJ
54 fveq2 S=clsJS=clsJ
55 54 necon3i clsJSclsJS
56 53 55 syl JTopOnXSXAclsJSS
57 snfbas SXSXJSfBasX
58 20 56 19 57 syl3anc JTopOnXSXAclsJSSfBasX
59 fbunfip neiJAfBasXSfBasX¬fineiJASxneiJAySxy
60 48 58 59 syl2anc JTopOnXSXAclsJS¬fineiJASxneiJAySxy
61 36 60 mpbird JTopOnXSXAclsJS¬fineiJAS
62 fsubbas XJfineiJASfBasXneiJAS𝒫XneiJAS¬fineiJAS
63 19 62 syl JTopOnXSXAclsJSfineiJASfBasXneiJAS𝒫XneiJAS¬fineiJAS
64 17 24 61 63 mpbir3and JTopOnXSXAclsJSfineiJASfBasX
65 fgcl fineiJASfBasXXfilGenfineiJASFilX
66 64 65 syl JTopOnXSXAclsJSXfilGenfineiJASFilX
67 1 66 eqeltrid JTopOnXSXAclsJSFFilX
68 fvex neiJAV
69 snex SV
70 68 69 unex neiJASV
71 ssfii neiJASVneiJASfineiJAS
72 70 71 ax-mp neiJASfineiJAS
73 ssfg fineiJASfBasXfineiJASXfilGenfineiJAS
74 64 73 syl JTopOnXSXAclsJSfineiJASXfilGenfineiJAS
75 74 1 sseqtrrdi JTopOnXSXAclsJSfineiJASF
76 72 75 sstrid JTopOnXSXAclsJSneiJASF
77 snssg SVSneiJASSneiJAS
78 21 77 syl JTopOnXSXAclsJSSneiJASSneiJAS
79 18 78 mpbiri JTopOnXSXAclsJSSneiJAS
80 76 79 sseldd JTopOnXSXAclsJSSF
81 76 unssad JTopOnXSXAclsJSneiJAF
82 elflim JTopOnXFFilXAJfLimFAXneiJAF
83 37 67 82 syl2anc JTopOnXSXAclsJSAJfLimFAXneiJAF
84 41 81 83 mpbir2and JTopOnXSXAclsJSAJfLimF
85 67 80 84 3jca JTopOnXSXAclsJSFFilXSFAJfLimF