Description: Lemma for fmfnfm . (Contributed by Jeff Hankins, 19-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fmfnfm.b | |
|
fmfnfm.l | |
||
fmfnfm.f | |
||
fmfnfm.fm | |
||
Assertion | fmfnfmlem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmfnfm.b | |
|
2 | fmfnfm.l | |
|
3 | fmfnfm.f | |
|
4 | fmfnfm.fm | |
|
5 | 2 | ad2antrr | |
6 | simplr | |
|
7 | ffn | |
|
8 | dffn4 | |
|
9 | 7 8 | sylib | |
10 | foima | |
|
11 | 3 9 10 | 3syl | |
12 | filtop | |
|
13 | 2 12 | syl | |
14 | fgcl | |
|
15 | filtop | |
|
16 | 1 14 15 | 3syl | |
17 | eqid | |
|
18 | 17 | imaelfm | |
19 | 13 1 3 16 18 | syl31anc | |
20 | 11 19 | eqeltrrd | |
21 | 4 20 | sseldd | |
22 | 21 | ad2antrr | |
23 | filin | |
|
24 | 5 6 22 23 | syl3anc | |
25 | simprr | |
|
26 | elin | |
|
27 | fvelrnb | |
|
28 | 3 7 27 | 3syl | |
29 | 28 | ad2antrr | |
30 | 3 | ffund | |
31 | 30 | ad2antrr | |
32 | simprr | |
|
33 | 3 | fdmd | |
34 | 33 | ad2antrr | |
35 | 32 34 | eleqtrrd | |
36 | fvimacnv | |
|
37 | 31 35 36 | syl2anc | |
38 | cnvimass | |
|
39 | funfvima2 | |
|
40 | 31 38 39 | sylancl | |
41 | ssel | |
|
42 | 41 | ad2antrl | |
43 | 40 42 | syld | |
44 | 37 43 | sylbid | |
45 | eleq1 | |
|
46 | eleq1 | |
|
47 | 45 46 | imbi12d | |
48 | 44 47 | syl5ibcom | |
49 | 48 | expr | |
50 | 49 | rexlimdv | |
51 | 29 50 | sylbid | |
52 | 51 | impcomd | |
53 | 52 | adantrr | |
54 | 26 53 | biimtrid | |
55 | 54 | ssrdv | |
56 | filss | |
|
57 | 5 24 25 55 56 | syl13anc | |
58 | 57 | exp32 | |
59 | imaeq2 | |
|
60 | 59 | sseq1d | |
61 | 60 | imbi1d | |
62 | 58 61 | syl5ibrcom | |
63 | 62 | rexlimdva | |