Metamath Proof Explorer


Theorem fmfnfmlem2

Description: Lemma for fmfnfm . (Contributed by Jeff Hankins, 19-Nov-2009) (Revised by Stefan O'Rear, 8-Aug-2015)

Ref Expression
Hypotheses fmfnfm.b φBfBasY
fmfnfm.l φLFilX
fmfnfm.f φF:YX
fmfnfm.fm φXFilMapFBL
Assertion fmfnfmlem2 φxLs=F-1xFsttXtL

Proof

Step Hyp Ref Expression
1 fmfnfm.b φBfBasY
2 fmfnfm.l φLFilX
3 fmfnfm.f φF:YX
4 fmfnfm.fm φXFilMapFBL
5 2 ad2antrr φxLFF-1xttXLFilX
6 simplr φxLFF-1xttXxL
7 ffn F:YXFFnY
8 dffn4 FFnYF:YontoranF
9 7 8 sylib F:YXF:YontoranF
10 foima F:YontoranFFY=ranF
11 3 9 10 3syl φFY=ranF
12 filtop LFilXXL
13 2 12 syl φXL
14 fgcl BfBasYYfilGenBFilY
15 filtop YfilGenBFilYYYfilGenB
16 1 14 15 3syl φYYfilGenB
17 eqid YfilGenB=YfilGenB
18 17 imaelfm XLBfBasYF:YXYYfilGenBFYXFilMapFB
19 13 1 3 16 18 syl31anc φFYXFilMapFB
20 11 19 eqeltrrd φranFXFilMapFB
21 4 20 sseldd φranFL
22 21 ad2antrr φxLFF-1xttXranFL
23 filin LFilXxLranFLxranFL
24 5 6 22 23 syl3anc φxLFF-1xttXxranFL
25 simprr φxLFF-1xttXtX
26 elin yxranFyxyranF
27 fvelrnb FFnYyranFzYFz=y
28 3 7 27 3syl φyranFzYFz=y
29 28 ad2antrr φxLFF-1xtyranFzYFz=y
30 3 ffund φFunF
31 30 ad2antrr φxLFF-1xtzYFunF
32 simprr φxLFF-1xtzYzY
33 3 fdmd φdomF=Y
34 33 ad2antrr φxLFF-1xtzYdomF=Y
35 32 34 eleqtrrd φxLFF-1xtzYzdomF
36 fvimacnv FunFzdomFFzxzF-1x
37 31 35 36 syl2anc φxLFF-1xtzYFzxzF-1x
38 cnvimass F-1xdomF
39 funfvima2 FunFF-1xdomFzF-1xFzFF-1x
40 31 38 39 sylancl φxLFF-1xtzYzF-1xFzFF-1x
41 ssel FF-1xtFzFF-1xFzt
42 41 ad2antrl φxLFF-1xtzYFzFF-1xFzt
43 40 42 syld φxLFF-1xtzYzF-1xFzt
44 37 43 sylbid φxLFF-1xtzYFzxFzt
45 eleq1 Fz=yFzxyx
46 eleq1 Fz=yFztyt
47 45 46 imbi12d Fz=yFzxFztyxyt
48 44 47 syl5ibcom φxLFF-1xtzYFz=yyxyt
49 48 expr φxLFF-1xtzYFz=yyxyt
50 49 rexlimdv φxLFF-1xtzYFz=yyxyt
51 29 50 sylbid φxLFF-1xtyranFyxyt
52 51 impcomd φxLFF-1xtyxyranFyt
53 52 adantrr φxLFF-1xttXyxyranFyt
54 26 53 biimtrid φxLFF-1xttXyxranFyt
55 54 ssrdv φxLFF-1xttXxranFt
56 filss LFilXxranFLtXxranFttL
57 5 24 25 55 56 syl13anc φxLFF-1xttXtL
58 57 exp32 φxLFF-1xttXtL
59 imaeq2 s=F-1xFs=FF-1x
60 59 sseq1d s=F-1xFstFF-1xt
61 60 imbi1d s=F-1xFsttXtLFF-1xttXtL
62 58 61 syl5ibrcom φxLs=F-1xFsttXtL
63 62 rexlimdva φxLs=F-1xFsttXtL