Step |
Hyp |
Ref |
Expression |
1 |
|
peano2nn0 |
|
2 |
|
peano2nn0 |
|
3 |
|
fmtno |
|
4 |
1 2 3
|
3syl |
|
5 |
|
2cnd |
|
6 |
5 1
|
expp1d |
|
7 |
6
|
oveq2d |
|
8 |
|
2nn0 |
|
9 |
8
|
a1i |
|
10 |
9 1
|
nn0expcld |
|
11 |
9 10
|
nn0expcld |
|
12 |
11
|
nn0cnd |
|
13 |
12
|
sqvald |
|
14 |
5 9 10
|
expmuld |
|
15 |
|
fmtnom1nn |
|
16 |
1 15
|
syl |
|
17 |
16 16
|
oveq12d |
|
18 |
13 14 17
|
3eqtr4d |
|
19 |
7 18
|
eqtrd |
|
20 |
19
|
oveq1d |
|
21 |
4 20
|
eqtrd |
|
22 |
21
|
adantr |
|
23 |
|
oveq1 |
|
24 |
23
|
oveq1d |
|
25 |
24
|
oveq1d |
|
26 |
25
|
adantl |
|
27 |
|
fzfid |
|
28 |
|
elfznn0 |
|
29 |
|
fmtnonn |
|
30 |
29
|
nncnd |
|
31 |
28 30
|
syl |
|
32 |
31
|
adantl |
|
33 |
27 32
|
fprodcl |
|
34 |
|
1cnd |
|
35 |
33 5 34
|
addsubassd |
|
36 |
|
2m1e1 |
|
37 |
36
|
oveq2i |
|
38 |
35 37
|
eqtrdi |
|
39 |
38
|
oveq1d |
|
40 |
|
fmtnonn |
|
41 |
1 40
|
syl |
|
42 |
41
|
nncnd |
|
43 |
42 34
|
subcld |
|
44 |
33 42
|
muls1d |
|
45 |
43
|
mulid2d |
|
46 |
44 45
|
oveq12d |
|
47 |
33 43 34 46
|
joinlmuladdmuld |
|
48 |
39 47
|
eqtrd |
|
49 |
48
|
adantr |
|
50 |
49
|
oveq1d |
|
51 |
|
eqcom |
|
52 |
42 5 33
|
subadd2d |
|
53 |
51 52
|
bitr4id |
|
54 |
|
oveq2 |
|
55 |
54
|
oveq1d |
|
56 |
55
|
oveq1d |
|
57 |
56
|
eqcoms |
|
58 |
33 42
|
mulcld |
|
59 |
42 5
|
subcld |
|
60 |
58 59
|
subcld |
|
61 |
60 43 34
|
addassd |
|
62 |
|
elnn0uz |
|
63 |
62
|
biimpi |
|
64 |
|
elfznn0 |
|
65 |
64 30
|
syl |
|
66 |
65
|
adantl |
|
67 |
|
fveq2 |
|
68 |
63 66 67
|
fprodp1 |
|
69 |
68
|
eqcomd |
|
70 |
69
|
oveq1d |
|
71 |
|
npcan1 |
|
72 |
42 71
|
syl |
|
73 |
70 72
|
oveq12d |
|
74 |
|
fzfid |
|
75 |
74 66
|
fprodcl |
|
76 |
75 59 42
|
subadd23d |
|
77 |
73 76
|
eqtrd |
|
78 |
42 5
|
nncand |
|
79 |
78
|
oveq2d |
|
80 |
61 77 79
|
3eqtrd |
|
81 |
57 80
|
sylan9eqr |
|
82 |
81
|
ex |
|
83 |
53 82
|
sylbid |
|
84 |
83
|
imp |
|
85 |
50 84
|
eqtrd |
|
86 |
22 26 85
|
3eqtrd |
|
87 |
86
|
ex |
|