Metamath Proof Explorer


Theorem fmul01

Description: Multiplying a finite number of values in [ 0 , 1 ] , gives the final product itself a number in [ 0 , 1 ]. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fmul01.1 _ i B
fmul01.2 i φ
fmul01.3 A = seq L × B
fmul01.4 φ L
fmul01.5 φ M L
fmul01.6 φ K L M
fmul01.7 φ i L M B i
fmul01.8 φ i L M 0 B i
fmul01.9 φ i L M B i 1
Assertion fmul01 φ 0 A K A K 1

Proof

Step Hyp Ref Expression
1 fmul01.1 _ i B
2 fmul01.2 i φ
3 fmul01.3 A = seq L × B
4 fmul01.4 φ L
5 fmul01.5 φ M L
6 fmul01.6 φ K L M
7 fmul01.7 φ i L M B i
8 fmul01.8 φ i L M 0 B i
9 fmul01.9 φ i L M B i 1
10 fveq2 k = L A k = A L
11 10 breq2d k = L 0 A k 0 A L
12 10 breq1d k = L A k 1 A L 1
13 11 12 anbi12d k = L 0 A k A k 1 0 A L A L 1
14 13 imbi2d k = L φ 0 A k A k 1 φ 0 A L A L 1
15 fveq2 k = j A k = A j
16 15 breq2d k = j 0 A k 0 A j
17 15 breq1d k = j A k 1 A j 1
18 16 17 anbi12d k = j 0 A k A k 1 0 A j A j 1
19 18 imbi2d k = j φ 0 A k A k 1 φ 0 A j A j 1
20 fveq2 k = j + 1 A k = A j + 1
21 20 breq2d k = j + 1 0 A k 0 A j + 1
22 20 breq1d k = j + 1 A k 1 A j + 1 1
23 21 22 anbi12d k = j + 1 0 A k A k 1 0 A j + 1 A j + 1 1
24 23 imbi2d k = j + 1 φ 0 A k A k 1 φ 0 A j + 1 A j + 1 1
25 fveq2 k = K A k = A K
26 25 breq2d k = K 0 A k 0 A K
27 25 breq1d k = K A k 1 A K 1
28 26 27 anbi12d k = K 0 A k A k 1 0 A K A K 1
29 28 imbi2d k = K φ 0 A k A k 1 φ 0 A K A K 1
30 eluzelz M L M
31 5 30 syl φ M
32 4 zred φ L
33 32 leidd φ L L
34 eluz L M M L L M
35 4 31 34 syl2anc φ M L L M
36 5 35 mpbid φ L M
37 4 31 4 33 36 elfzd φ L L M
38 37 ancli φ φ L L M
39 nfv i L L M
40 2 39 nfan i φ L L M
41 nfcv _ i 0
42 nfcv _ i
43 nfcv _ i L
44 1 43 nffv _ i B L
45 41 42 44 nfbr i 0 B L
46 40 45 nfim i φ L L M 0 B L
47 eleq1 i = L i L M L L M
48 47 anbi2d i = L φ i L M φ L L M
49 fveq2 i = L B i = B L
50 49 breq2d i = L 0 B i 0 B L
51 48 50 imbi12d i = L φ i L M 0 B i φ L L M 0 B L
52 46 51 8 vtoclg1f L L M φ L L M 0 B L
53 37 38 52 sylc φ 0 B L
54 3 fveq1i A L = seq L × B L
55 seq1 L seq L × B L = B L
56 4 55 syl φ seq L × B L = B L
57 54 56 eqtrid φ A L = B L
58 53 57 breqtrrd φ 0 A L
59 nfcv _ i 1
60 44 42 59 nfbr i B L 1
61 40 60 nfim i φ L L M B L 1
62 49 breq1d i = L B i 1 B L 1
63 48 62 imbi12d i = L φ i L M B i 1 φ L L M B L 1
64 61 63 9 vtoclg1f L L M φ L L M B L 1
65 37 38 64 sylc φ B L 1
66 57 65 eqbrtrd φ A L 1
67 58 66 jca φ 0 A L A L 1
68 67 a1i M L φ 0 A L A L 1
69 elfzouz j L ..^ M j L
70 69 3ad2ant1 j L ..^ M φ 0 A j A j 1 φ j L
71 simpl3 j L ..^ M φ 0 A j A j 1 φ k L j φ
72 elfzouz2 j L ..^ M M j
73 fzss2 M j L j L M
74 72 73 syl j L ..^ M L j L M
75 74 3ad2ant1 j L ..^ M φ 0 A j A j 1 φ L j L M
76 75 sselda j L ..^ M φ 0 A j A j 1 φ k L j k L M
77 nfv i k L M
78 2 77 nfan i φ k L M
79 nfcv _ i k
80 1 79 nffv _ i B k
81 80 nfel1 i B k
82 78 81 nfim i φ k L M B k
83 eleq1 i = k i L M k L M
84 83 anbi2d i = k φ i L M φ k L M
85 fveq2 i = k B i = B k
86 85 eleq1d i = k B i B k
87 84 86 imbi12d i = k φ i L M B i φ k L M B k
88 82 87 7 chvarfv φ k L M B k
89 71 76 88 syl2anc j L ..^ M φ 0 A j A j 1 φ k L j B k
90 remulcl k l k l
91 90 adantl j L ..^ M φ 0 A j A j 1 φ k l k l
92 70 89 91 seqcl j L ..^ M φ 0 A j A j 1 φ seq L × B j
93 simp3 j L ..^ M φ 0 A j A j 1 φ φ
94 fzofzp1 j L ..^ M j + 1 L M
95 94 3ad2ant1 j L ..^ M φ 0 A j A j 1 φ j + 1 L M
96 nfv i j + 1 L M
97 2 96 nfan i φ j + 1 L M
98 nfcv _ i j + 1
99 1 98 nffv _ i B j + 1
100 99 nfel1 i B j + 1
101 97 100 nfim i φ j + 1 L M B j + 1
102 eleq1 i = j + 1 i L M j + 1 L M
103 102 anbi2d i = j + 1 φ i L M φ j + 1 L M
104 fveq2 i = j + 1 B i = B j + 1
105 104 eleq1d i = j + 1 B i B j + 1
106 103 105 imbi12d i = j + 1 φ i L M B i φ j + 1 L M B j + 1
107 101 106 7 vtoclg1f j + 1 L M φ j + 1 L M B j + 1
108 107 anabsi7 φ j + 1 L M B j + 1
109 93 95 108 syl2anc j L ..^ M φ 0 A j A j 1 φ B j + 1
110 pm3.35 φ φ 0 A j A j 1 0 A j A j 1
111 110 ancoms φ 0 A j A j 1 φ 0 A j A j 1
112 simpl 0 A j A j 1 0 A j
113 111 112 syl φ 0 A j A j 1 φ 0 A j
114 113 3adant1 j L ..^ M φ 0 A j A j 1 φ 0 A j
115 3 fveq1i A j = seq L × B j
116 114 115 breqtrdi j L ..^ M φ 0 A j A j 1 φ 0 seq L × B j
117 simp1 j L ..^ M φ 0 A j A j 1 φ j L ..^ M
118 94 adantl φ j L ..^ M j + 1 L M
119 simpl φ j L ..^ M φ
120 119 118 jca φ j L ..^ M φ j + 1 L M
121 41 42 99 nfbr i 0 B j + 1
122 97 121 nfim i φ j + 1 L M 0 B j + 1
123 104 breq2d i = j + 1 0 B i 0 B j + 1
124 103 123 imbi12d i = j + 1 φ i L M 0 B i φ j + 1 L M 0 B j + 1
125 122 124 8 vtoclg1f j + 1 L M φ j + 1 L M 0 B j + 1
126 118 120 125 sylc φ j L ..^ M 0 B j + 1
127 93 117 126 syl2anc j L ..^ M φ 0 A j A j 1 φ 0 B j + 1
128 92 109 116 127 mulge0d j L ..^ M φ 0 A j A j 1 φ 0 seq L × B j B j + 1
129 seqp1 j L seq L × B j + 1 = seq L × B j B j + 1
130 70 129 syl j L ..^ M φ 0 A j A j 1 φ seq L × B j + 1 = seq L × B j B j + 1
131 128 130 breqtrrd j L ..^ M φ 0 A j A j 1 φ 0 seq L × B j + 1
132 3 fveq1i A j + 1 = seq L × B j + 1
133 131 132 breqtrrdi j L ..^ M φ 0 A j A j 1 φ 0 A j + 1
134 92 109 remulcld j L ..^ M φ 0 A j A j 1 φ seq L × B j B j + 1
135 1red j L ..^ M φ 0 A j A j 1 φ 1
136 93 95 jca j L ..^ M φ 0 A j A j 1 φ φ j + 1 L M
137 99 42 59 nfbr i B j + 1 1
138 97 137 nfim i φ j + 1 L M B j + 1 1
139 104 breq1d i = j + 1 B i 1 B j + 1 1
140 103 139 imbi12d i = j + 1 φ i L M B i 1 φ j + 1 L M B j + 1 1
141 138 140 9 vtoclg1f j + 1 L M φ j + 1 L M B j + 1 1
142 95 136 141 sylc j L ..^ M φ 0 A j A j 1 φ B j + 1 1
143 109 135 92 116 142 lemul2ad j L ..^ M φ 0 A j A j 1 φ seq L × B j B j + 1 seq L × B j 1
144 92 recnd j L ..^ M φ 0 A j A j 1 φ seq L × B j
145 144 mulid1d j L ..^ M φ 0 A j A j 1 φ seq L × B j 1 = seq L × B j
146 143 145 breqtrd j L ..^ M φ 0 A j A j 1 φ seq L × B j B j + 1 seq L × B j
147 simp2 j L ..^ M φ 0 A j A j 1 φ φ 0 A j A j 1
148 110 simprd φ φ 0 A j A j 1 A j 1
149 93 147 148 syl2anc j L ..^ M φ 0 A j A j 1 φ A j 1
150 115 149 eqbrtrrid j L ..^ M φ 0 A j A j 1 φ seq L × B j 1
151 134 92 135 146 150 letrd j L ..^ M φ 0 A j A j 1 φ seq L × B j B j + 1 1
152 130 151 eqbrtrd j L ..^ M φ 0 A j A j 1 φ seq L × B j + 1 1
153 132 152 eqbrtrid j L ..^ M φ 0 A j A j 1 φ A j + 1 1
154 133 153 jca j L ..^ M φ 0 A j A j 1 φ 0 A j + 1 A j + 1 1
155 154 3exp j L ..^ M φ 0 A j A j 1 φ 0 A j + 1 A j + 1 1
156 14 19 24 29 68 155 fzind2 K L M φ 0 A K A K 1
157 6 156 mpcom φ 0 A K A K 1