Metamath Proof Explorer


Theorem fmul01

Description: Multiplying a finite number of values in [ 0 , 1 ] , gives the final product itself a number in [ 0 , 1 ]. (Contributed by Glauco Siliprandi, 20-Apr-2017)

Ref Expression
Hypotheses fmul01.1 _iB
fmul01.2 iφ
fmul01.3 A=seqL×B
fmul01.4 φL
fmul01.5 φML
fmul01.6 φKLM
fmul01.7 φiLMBi
fmul01.8 φiLM0Bi
fmul01.9 φiLMBi1
Assertion fmul01 φ0AKAK1

Proof

Step Hyp Ref Expression
1 fmul01.1 _iB
2 fmul01.2 iφ
3 fmul01.3 A=seqL×B
4 fmul01.4 φL
5 fmul01.5 φML
6 fmul01.6 φKLM
7 fmul01.7 φiLMBi
8 fmul01.8 φiLM0Bi
9 fmul01.9 φiLMBi1
10 fveq2 k=LAk=AL
11 10 breq2d k=L0Ak0AL
12 10 breq1d k=LAk1AL1
13 11 12 anbi12d k=L0AkAk10ALAL1
14 13 imbi2d k=Lφ0AkAk1φ0ALAL1
15 fveq2 k=jAk=Aj
16 15 breq2d k=j0Ak0Aj
17 15 breq1d k=jAk1Aj1
18 16 17 anbi12d k=j0AkAk10AjAj1
19 18 imbi2d k=jφ0AkAk1φ0AjAj1
20 fveq2 k=j+1Ak=Aj+1
21 20 breq2d k=j+10Ak0Aj+1
22 20 breq1d k=j+1Ak1Aj+11
23 21 22 anbi12d k=j+10AkAk10Aj+1Aj+11
24 23 imbi2d k=j+1φ0AkAk1φ0Aj+1Aj+11
25 fveq2 k=KAk=AK
26 25 breq2d k=K0Ak0AK
27 25 breq1d k=KAk1AK1
28 26 27 anbi12d k=K0AkAk10AKAK1
29 28 imbi2d k=Kφ0AkAk1φ0AKAK1
30 eluzelz MLM
31 5 30 syl φM
32 4 zred φL
33 32 leidd φLL
34 eluz LMMLLM
35 4 31 34 syl2anc φMLLM
36 5 35 mpbid φLM
37 4 31 4 33 36 elfzd φLLM
38 37 ancli φφLLM
39 nfv iLLM
40 2 39 nfan iφLLM
41 nfcv _i0
42 nfcv _i
43 nfcv _iL
44 1 43 nffv _iBL
45 41 42 44 nfbr i0BL
46 40 45 nfim iφLLM0BL
47 eleq1 i=LiLMLLM
48 47 anbi2d i=LφiLMφLLM
49 fveq2 i=LBi=BL
50 49 breq2d i=L0Bi0BL
51 48 50 imbi12d i=LφiLM0BiφLLM0BL
52 46 51 8 vtoclg1f LLMφLLM0BL
53 37 38 52 sylc φ0BL
54 3 fveq1i AL=seqL×BL
55 seq1 LseqL×BL=BL
56 4 55 syl φseqL×BL=BL
57 54 56 eqtrid φAL=BL
58 53 57 breqtrrd φ0AL
59 nfcv _i1
60 44 42 59 nfbr iBL1
61 40 60 nfim iφLLMBL1
62 49 breq1d i=LBi1BL1
63 48 62 imbi12d i=LφiLMBi1φLLMBL1
64 61 63 9 vtoclg1f LLMφLLMBL1
65 37 38 64 sylc φBL1
66 57 65 eqbrtrd φAL1
67 58 66 jca φ0ALAL1
68 67 a1i MLφ0ALAL1
69 elfzouz jL..^MjL
70 69 3ad2ant1 jL..^Mφ0AjAj1φjL
71 simpl3 jL..^Mφ0AjAj1φkLjφ
72 elfzouz2 jL..^MMj
73 fzss2 MjLjLM
74 72 73 syl jL..^MLjLM
75 74 3ad2ant1 jL..^Mφ0AjAj1φLjLM
76 75 sselda jL..^Mφ0AjAj1φkLjkLM
77 nfv ikLM
78 2 77 nfan iφkLM
79 nfcv _ik
80 1 79 nffv _iBk
81 80 nfel1 iBk
82 78 81 nfim iφkLMBk
83 eleq1 i=kiLMkLM
84 83 anbi2d i=kφiLMφkLM
85 fveq2 i=kBi=Bk
86 85 eleq1d i=kBiBk
87 84 86 imbi12d i=kφiLMBiφkLMBk
88 82 87 7 chvarfv φkLMBk
89 71 76 88 syl2anc jL..^Mφ0AjAj1φkLjBk
90 remulcl klkl
91 90 adantl jL..^Mφ0AjAj1φklkl
92 70 89 91 seqcl jL..^Mφ0AjAj1φseqL×Bj
93 simp3 jL..^Mφ0AjAj1φφ
94 fzofzp1 jL..^Mj+1LM
95 94 3ad2ant1 jL..^Mφ0AjAj1φj+1LM
96 nfv ij+1LM
97 2 96 nfan iφj+1LM
98 nfcv _ij+1
99 1 98 nffv _iBj+1
100 99 nfel1 iBj+1
101 97 100 nfim iφj+1LMBj+1
102 eleq1 i=j+1iLMj+1LM
103 102 anbi2d i=j+1φiLMφj+1LM
104 fveq2 i=j+1Bi=Bj+1
105 104 eleq1d i=j+1BiBj+1
106 103 105 imbi12d i=j+1φiLMBiφj+1LMBj+1
107 101 106 7 vtoclg1f j+1LMφj+1LMBj+1
108 107 anabsi7 φj+1LMBj+1
109 93 95 108 syl2anc jL..^Mφ0AjAj1φBj+1
110 pm3.35 φφ0AjAj10AjAj1
111 110 ancoms φ0AjAj1φ0AjAj1
112 simpl 0AjAj10Aj
113 111 112 syl φ0AjAj1φ0Aj
114 113 3adant1 jL..^Mφ0AjAj1φ0Aj
115 3 fveq1i Aj=seqL×Bj
116 114 115 breqtrdi jL..^Mφ0AjAj1φ0seqL×Bj
117 simp1 jL..^Mφ0AjAj1φjL..^M
118 94 adantl φjL..^Mj+1LM
119 simpl φjL..^Mφ
120 119 118 jca φjL..^Mφj+1LM
121 41 42 99 nfbr i0Bj+1
122 97 121 nfim iφj+1LM0Bj+1
123 104 breq2d i=j+10Bi0Bj+1
124 103 123 imbi12d i=j+1φiLM0Biφj+1LM0Bj+1
125 122 124 8 vtoclg1f j+1LMφj+1LM0Bj+1
126 118 120 125 sylc φjL..^M0Bj+1
127 93 117 126 syl2anc jL..^Mφ0AjAj1φ0Bj+1
128 92 109 116 127 mulge0d jL..^Mφ0AjAj1φ0seqL×BjBj+1
129 seqp1 jLseqL×Bj+1=seqL×BjBj+1
130 70 129 syl jL..^Mφ0AjAj1φseqL×Bj+1=seqL×BjBj+1
131 128 130 breqtrrd jL..^Mφ0AjAj1φ0seqL×Bj+1
132 3 fveq1i Aj+1=seqL×Bj+1
133 131 132 breqtrrdi jL..^Mφ0AjAj1φ0Aj+1
134 92 109 remulcld jL..^Mφ0AjAj1φseqL×BjBj+1
135 1red jL..^Mφ0AjAj1φ1
136 93 95 jca jL..^Mφ0AjAj1φφj+1LM
137 99 42 59 nfbr iBj+11
138 97 137 nfim iφj+1LMBj+11
139 104 breq1d i=j+1Bi1Bj+11
140 103 139 imbi12d i=j+1φiLMBi1φj+1LMBj+11
141 138 140 9 vtoclg1f j+1LMφj+1LMBj+11
142 95 136 141 sylc jL..^Mφ0AjAj1φBj+11
143 109 135 92 116 142 lemul2ad jL..^Mφ0AjAj1φseqL×BjBj+1seqL×Bj1
144 92 recnd jL..^Mφ0AjAj1φseqL×Bj
145 144 mulridd jL..^Mφ0AjAj1φseqL×Bj1=seqL×Bj
146 143 145 breqtrd jL..^Mφ0AjAj1φseqL×BjBj+1seqL×Bj
147 simp2 jL..^Mφ0AjAj1φφ0AjAj1
148 110 simprd φφ0AjAj1Aj1
149 93 147 148 syl2anc jL..^Mφ0AjAj1φAj1
150 115 149 eqbrtrrid jL..^Mφ0AjAj1φseqL×Bj1
151 134 92 135 146 150 letrd jL..^Mφ0AjAj1φseqL×BjBj+11
152 130 151 eqbrtrd jL..^Mφ0AjAj1φseqL×Bj+11
153 132 152 eqbrtrid jL..^Mφ0AjAj1φAj+11
154 133 153 jca jL..^Mφ0AjAj1φ0Aj+1Aj+11
155 154 3exp jL..^Mφ0AjAj1φ0Aj+1Aj+11
156 14 19 24 29 68 155 fzind2 KLMφ0AKAK1
157 6 156 mpcom φ0AKAK1