Metamath Proof Explorer


Theorem fnrelpredd

Description: A function that preserves a relation also preserves predecessors. (Contributed by BTernaryTau, 16-Jul-2024)

Ref Expression
Hypotheses fnrelpredd.1 φFFnA
fnrelpredd.2 φxAyAxRyFxSFy
fnrelpredd.3 φCA
fnrelpredd.4 φDA
Assertion fnrelpredd φPredSFCFD=FPredRCD

Proof

Step Hyp Ref Expression
1 fnrelpredd.1 φFFnA
2 fnrelpredd.2 φxAyAxRyFxSFy
3 fnrelpredd.3 φCA
4 fnrelpredd.4 φDA
5 fvex FDV
6 5 dfpred3 PredSFCFD=vFC|vSFD
7 elrabi uxC|FxSFDuC
8 7 anim1i uxC|FxSFDFu=vuCFu=v
9 8 reximi2 uxC|FxSFDFu=vuCFu=v
10 1 3 fvelimabd φvFCuCFu=v
11 9 10 imbitrrid φuxC|FxSFDFu=vvFC
12 fveq2 x=uFx=Fu
13 12 breq1d x=uFxSFDFuSFD
14 13 elrab uxC|FxSFDuCFuSFD
15 breq1 Fu=vFuSFDvSFD
16 15 biimpac FuSFDFu=vvSFD
17 16 adantll uCFuSFDFu=vvSFD
18 14 17 sylanb uxC|FxSFDFu=vvSFD
19 18 rexlimiva uxC|FxSFDFu=vvSFD
20 11 19 jca2 φuxC|FxSFDFu=vvFCvSFD
21 10 biimpd φvFCuCFu=v
22 21 adantrd φvFCvSFDuCFu=v
23 simpl uCFu=vuC
24 23 a1i vSFDuCFu=vuC
25 15 biimprcd vSFDFu=vFuSFD
26 25 adantld vSFDuCFu=vFuSFD
27 simpr uCFu=vFu=v
28 27 a1i vSFDuCFu=vFu=v
29 24 26 28 3jcad vSFDuCFu=vuCFuSFDFu=v
30 14 biimpri uCFuSFDuxC|FxSFD
31 30 anim1i uCFuSFDFu=vuxC|FxSFDFu=v
32 31 3impa uCFuSFDFu=vuxC|FxSFDFu=v
33 29 32 syl6 vSFDuCFu=vuxC|FxSFDFu=v
34 33 reximdv2 vSFDuCFu=vuxC|FxSFDFu=v
35 34 adantl vFCvSFDuCFu=vuxC|FxSFDFu=v
36 22 35 sylcom φvFCvSFDuxC|FxSFDFu=v
37 20 36 impbid φuxC|FxSFDFu=vvFCvSFD
38 37 abbidv φv|uxC|FxSFDFu=v=v|vFCvSFD
39 df-rab vFC|vSFD=v|vFCvSFD
40 38 39 eqtr4di φv|uxC|FxSFDFu=v=vFC|vSFD
41 6 40 eqtr4id φPredSFCFD=v|uxC|FxSFDFu=v
42 fnfun FFnAFunF
43 1 42 syl φFunF
44 ssrab2 xC|FxSFDC
45 44 3 sstrid φxC|FxSFDA
46 1 fndmd φdomF=A
47 45 46 sseqtrrd φxC|FxSFDdomF
48 dfimafn FunFxC|FxSFDdomFFxC|FxSFD=v|uxC|FxSFDFu=v
49 43 47 48 syl2anc φFxC|FxSFD=v|uxC|FxSFDFu=v
50 41 49 eqtr4d φPredSFCFD=FxC|FxSFD
51 dfpred3g DAPredRCD=xC|xRD
52 4 51 syl φPredRCD=xC|xRD
53 3 sselda φxCxA
54 2 r19.21bi φxAyAxRyFxSFy
55 breq2 y=DxRyxRD
56 fveq2 y=DFy=FD
57 56 breq2d y=DFxSFyFxSFD
58 55 57 bibi12d y=DxRyFxSFyxRDFxSFD
59 58 rspcv DAyAxRyFxSFyxRDFxSFD
60 4 59 syl φyAxRyFxSFyxRDFxSFD
61 60 adantr φxAyAxRyFxSFyxRDFxSFD
62 54 61 mpd φxAxRDFxSFD
63 53 62 syldan φxCxRDFxSFD
64 63 rabbidva φxC|xRD=xC|FxSFD
65 52 64 eqtrd φPredRCD=xC|FxSFD
66 65 imaeq2d φFPredRCD=FxC|FxSFD
67 50 66 eqtr4d φPredSFCFD=FPredRCD