Description: A function that preserves a relation also preserves predecessors. (Contributed by BTernaryTau, 16-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | fnrelpredd.1 | |
|
fnrelpredd.2 | |
||
fnrelpredd.3 | |
||
fnrelpredd.4 | |
||
Assertion | fnrelpredd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnrelpredd.1 | |
|
2 | fnrelpredd.2 | |
|
3 | fnrelpredd.3 | |
|
4 | fnrelpredd.4 | |
|
5 | fvex | |
|
6 | 5 | dfpred3 | |
7 | elrabi | |
|
8 | 7 | anim1i | |
9 | 8 | reximi2 | |
10 | 1 3 | fvelimabd | |
11 | 9 10 | imbitrrid | |
12 | fveq2 | |
|
13 | 12 | breq1d | |
14 | 13 | elrab | |
15 | breq1 | |
|
16 | 15 | biimpac | |
17 | 16 | adantll | |
18 | 14 17 | sylanb | |
19 | 18 | rexlimiva | |
20 | 11 19 | jca2 | |
21 | 10 | biimpd | |
22 | 21 | adantrd | |
23 | simpl | |
|
24 | 23 | a1i | |
25 | 15 | biimprcd | |
26 | 25 | adantld | |
27 | simpr | |
|
28 | 27 | a1i | |
29 | 24 26 28 | 3jcad | |
30 | 14 | biimpri | |
31 | 30 | anim1i | |
32 | 31 | 3impa | |
33 | 29 32 | syl6 | |
34 | 33 | reximdv2 | |
35 | 34 | adantl | |
36 | 22 35 | sylcom | |
37 | 20 36 | impbid | |
38 | 37 | abbidv | |
39 | df-rab | |
|
40 | 38 39 | eqtr4di | |
41 | 6 40 | eqtr4id | |
42 | fnfun | |
|
43 | 1 42 | syl | |
44 | ssrab2 | |
|
45 | 44 3 | sstrid | |
46 | 1 | fndmd | |
47 | 45 46 | sseqtrrd | |
48 | dfimafn | |
|
49 | 43 47 48 | syl2anc | |
50 | 41 49 | eqtr4d | |
51 | dfpred3g | |
|
52 | 4 51 | syl | |
53 | 3 | sselda | |
54 | 2 | r19.21bi | |
55 | breq2 | |
|
56 | fveq2 | |
|
57 | 56 | breq2d | |
58 | 55 57 | bibi12d | |
59 | 58 | rspcv | |
60 | 4 59 | syl | |
61 | 60 | adantr | |
62 | 54 61 | mpd | |
63 | 53 62 | syldan | |
64 | 63 | rabbidva | |
65 | 52 64 | eqtrd | |
66 | 65 | imaeq2d | |
67 | 50 66 | eqtr4d | |