| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem109.a |  | 
						
							| 2 |  | fourierdlem109.b |  | 
						
							| 3 |  | fourierdlem109.t |  | 
						
							| 4 |  | fourierdlem109.x |  | 
						
							| 5 |  | fourierdlem109.p |  | 
						
							| 6 |  | fourierdlem109.m |  | 
						
							| 7 |  | fourierdlem109.q |  | 
						
							| 8 |  | fourierdlem109.f |  | 
						
							| 9 |  | fourierdlem109.fper |  | 
						
							| 10 |  | fourierdlem109.fcn |  | 
						
							| 11 |  | fourierdlem109.r |  | 
						
							| 12 |  | fourierdlem109.l |  | 
						
							| 13 |  | fourierdlem109.o |  | 
						
							| 14 |  | fourierdlem109.h |  | 
						
							| 15 |  | fourierdlem109.n |  | 
						
							| 16 |  | fourierdlem109.16 |  | 
						
							| 17 |  | fourierdlem109.17 |  | 
						
							| 18 |  | fourierdlem109.18 |  | 
						
							| 19 |  | fourierdlem109.19 |  | 
						
							| 20 | 1 | adantr |  | 
						
							| 21 | 2 | adantr |  | 
						
							| 22 | 4 | adantr |  | 
						
							| 23 |  | simpr |  | 
						
							| 24 | 22 23 | elrpd |  | 
						
							| 25 | 6 | adantr |  | 
						
							| 26 | 7 | adantr |  | 
						
							| 27 | 8 | adantr |  | 
						
							| 28 | 9 | adantlr |  | 
						
							| 29 | 10 | adantlr |  | 
						
							| 30 | 11 | adantlr |  | 
						
							| 31 | 12 | adantlr |  | 
						
							| 32 | 20 21 3 24 5 25 26 27 28 29 30 31 | fourierdlem108 |  | 
						
							| 33 |  | oveq2 |  | 
						
							| 34 | 1 | recnd |  | 
						
							| 35 | 34 | subid1d |  | 
						
							| 36 | 33 35 | sylan9eqr |  | 
						
							| 37 |  | oveq2 |  | 
						
							| 38 | 2 | recnd |  | 
						
							| 39 | 38 | subid1d |  | 
						
							| 40 | 37 39 | sylan9eqr |  | 
						
							| 41 | 36 40 | oveq12d |  | 
						
							| 42 | 41 | itgeq1d |  | 
						
							| 43 | 42 | adantlr |  | 
						
							| 44 |  | simpll |  | 
						
							| 45 | 44 4 | syl |  | 
						
							| 46 |  | 0red |  | 
						
							| 47 |  | simpr |  | 
						
							| 48 | 47 | neqned |  | 
						
							| 49 |  | simplr |  | 
						
							| 50 | 45 46 48 49 | lttri5d |  | 
						
							| 51 | 4 | recnd |  | 
						
							| 52 | 34 51 | subcld |  | 
						
							| 53 | 52 51 | subnegd |  | 
						
							| 54 | 34 51 | npcand |  | 
						
							| 55 | 53 54 | eqtrd |  | 
						
							| 56 | 38 51 | subcld |  | 
						
							| 57 | 56 51 | subnegd |  | 
						
							| 58 | 38 51 | npcand |  | 
						
							| 59 | 57 58 | eqtrd |  | 
						
							| 60 | 55 59 | oveq12d |  | 
						
							| 61 | 60 | eqcomd |  | 
						
							| 62 | 61 | itgeq1d |  | 
						
							| 63 | 62 | adantr |  | 
						
							| 64 | 1 4 | resubcld |  | 
						
							| 65 | 64 | adantr |  | 
						
							| 66 | 2 4 | resubcld |  | 
						
							| 67 | 66 | adantr |  | 
						
							| 68 |  | eqid |  | 
						
							| 69 | 4 | renegcld |  | 
						
							| 70 | 69 | adantr |  | 
						
							| 71 | 4 | lt0neg1d |  | 
						
							| 72 | 71 | biimpa |  | 
						
							| 73 | 70 72 | elrpd |  | 
						
							| 74 |  | fveq2 |  | 
						
							| 75 |  | oveq1 |  | 
						
							| 76 | 75 | fveq2d |  | 
						
							| 77 | 74 76 | breq12d |  | 
						
							| 78 | 77 | cbvralvw |  | 
						
							| 79 | 78 | anbi2i |  | 
						
							| 80 | 79 | a1i |  | 
						
							| 81 | 80 | rabbiia |  | 
						
							| 82 | 81 | mpteq2i |  | 
						
							| 83 | 13 82 | eqtri |  | 
						
							| 84 | 5 6 7 | fourierdlem11 |  | 
						
							| 85 | 84 | simp3d |  | 
						
							| 86 | 1 2 4 85 | ltsub1dd |  | 
						
							| 87 | 3 5 6 7 64 66 86 13 14 15 16 | fourierdlem54 |  | 
						
							| 88 | 87 | simpld |  | 
						
							| 89 | 88 | simpld |  | 
						
							| 90 | 89 | adantr |  | 
						
							| 91 | 88 | simprd |  | 
						
							| 92 | 91 | adantr |  | 
						
							| 93 | 8 | adantr |  | 
						
							| 94 | 38 34 51 | nnncan2d |  | 
						
							| 95 | 94 3 | eqtr4di |  | 
						
							| 96 | 95 | oveq2d |  | 
						
							| 97 | 96 | adantr |  | 
						
							| 98 | 97 | fveq2d |  | 
						
							| 99 | 98 9 | eqtrd |  | 
						
							| 100 | 99 | adantlr |  | 
						
							| 101 | 6 | adantr |  | 
						
							| 102 | 7 | adantr |  | 
						
							| 103 | 8 | adantr |  | 
						
							| 104 | 9 | adantlr |  | 
						
							| 105 | 10 | adantlr |  | 
						
							| 106 | 64 | adantr |  | 
						
							| 107 | 64 | rexrd |  | 
						
							| 108 |  | pnfxr |  | 
						
							| 109 | 108 | a1i |  | 
						
							| 110 | 66 | ltpnfd |  | 
						
							| 111 | 107 109 66 86 110 | eliood |  | 
						
							| 112 | 111 | adantr |  | 
						
							| 113 |  | oveq1 |  | 
						
							| 114 | 113 | eleq1d |  | 
						
							| 115 | 114 | rexbidv |  | 
						
							| 116 | 115 | cbvrabv |  | 
						
							| 117 | 116 | uneq2i |  | 
						
							| 118 | 14 117 | eqtri |  | 
						
							| 119 |  | simpr |  | 
						
							| 120 |  | eqid |  | 
						
							| 121 |  | eqid |  | 
						
							| 122 |  | eqid |  | 
						
							| 123 |  | fveq2 |  | 
						
							| 124 | 123 | breq1d |  | 
						
							| 125 | 124 | cbvrabv |  | 
						
							| 126 | 125 | supeq1i |  | 
						
							| 127 | 126 | mpteq2i |  | 
						
							| 128 | 19 127 | eqtri |  | 
						
							| 129 | 5 3 101 102 103 104 105 106 112 13 118 15 16 17 18 119 120 121 122 128 | fourierdlem90 |  | 
						
							| 130 | 129 | adantlr |  | 
						
							| 131 | 11 | adantlr |  | 
						
							| 132 |  | eqid |  | 
						
							| 133 | 5 3 101 102 103 104 105 131 106 112 13 118 15 16 17 18 119 120 128 132 | fourierdlem89 |  | 
						
							| 134 | 133 | adantlr |  | 
						
							| 135 | 12 | adantlr |  | 
						
							| 136 |  | eqid |  | 
						
							| 137 | 5 3 101 102 103 104 105 135 106 112 13 118 15 16 17 18 119 120 128 136 | fourierdlem91 |  | 
						
							| 138 | 137 | adantlr |  | 
						
							| 139 | 65 67 68 73 83 90 92 93 100 130 134 138 | fourierdlem108 |  | 
						
							| 140 | 63 139 | eqtr2d |  | 
						
							| 141 | 44 50 140 | syl2anc |  | 
						
							| 142 | 43 141 | pm2.61dan |  | 
						
							| 143 | 32 142 | pm2.61dan |  |