Metamath Proof Explorer


Theorem fprodle

Description: If all the terms of two finite products are nonnegative and compare, so do the two products. (Contributed by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses fprodle.kph kφ
fprodle.a φAFin
fprodle.b φkAB
fprodle.0l3b φkA0B
fprodle.c φkAC
fprodle.blec φkABC
Assertion fprodle φkABkAC

Proof

Step Hyp Ref Expression
1 fprodle.kph kφ
2 fprodle.a φAFin
3 fprodle.b φkAB
4 fprodle.0l3b φkA0B
5 fprodle.c φkAC
6 fprodle.blec φkABC
7 1red φkAB01
8 nfra1 kkAB0
9 1 8 nfan kφkAB0
10 2 adantr φkAB0AFin
11 5 adantlr φkAB0kAC
12 3 adantlr φkAB0kAB
13 rspa kAB0kAB0
14 13 adantll φkAB0kAB0
15 11 12 14 redivcld φkAB0kACB
16 9 10 15 fprodreclf φkAB0kACB
17 1 2 3 fprodreclf φkAB
18 17 adantr φkAB0kAB
19 1 2 3 4 fprodge0 φ0kAB
20 19 adantr φkAB00kAB
21 4 adantlr φkAB0kA0B
22 12 21 14 ne0gt0d φkAB0kA0<B
23 12 22 elrpd φkAB0kAB+
24 6 adantlr φkAB0kABC
25 divge1 B+CBC1CB
26 23 11 24 25 syl3anc φkAB0kA1CB
27 9 10 15 26 fprodge1 φkAB01kACB
28 7 16 18 20 27 lemul2ad φkAB0kAB1kABkACB
29 3 recnd φkAB
30 1 2 29 fprodclf φkAB
31 30 mulridd φkAB1=kAB
32 31 adantr φkAB0kAB1=kAB
33 5 recnd φkAC
34 33 adantlr φkAB0kAC
35 29 adantlr φkAB0kAB
36 9 10 34 35 14 fproddivf φkAB0kACB=kACkAB
37 36 oveq2d φkAB0kABkACB=kABkACkAB
38 1 2 33 fprodclf φkAC
39 38 adantr φkAB0kAC
40 30 adantr φkAB0kAB
41 9 10 35 14 fprodn0f φkAB0kAB0
42 39 40 41 divcan2d φkAB0kABkACkAB=kAC
43 37 42 eqtrd φkAB0kABkACB=kAC
44 28 32 43 3brtr3d φkAB0kABkAC
45 nne ¬B0B=0
46 45 rexbii kA¬B0kAB=0
47 rexnal kA¬B0¬kAB0
48 nfv jB=0
49 nfcsb1v _kj/kB
50 49 nfeq1 kj/kB=0
51 csbeq1a k=jB=j/kB
52 51 eqeq1d k=jB=0j/kB=0
53 48 50 52 cbvrexw kAB=0jAj/kB=0
54 46 47 53 3bitr3i ¬kAB0jAj/kB=0
55 nfv kjA
56 1 55 50 nf3an kφjAj/kB=0
57 2 3ad2ant1 φjAj/kB=0AFin
58 29 3ad2antl1 φjAj/kB=0kAB
59 simp2 φjAj/kB=0jA
60 52 biimparc j/kB=0k=jB=0
61 60 3ad2antl3 φjAj/kB=0k=jB=0
62 56 57 58 59 61 fprodeq0g φjAj/kB=0kAB=0
63 62 rexlimdv3a φjAj/kB=0kAB=0
64 63 imp φjAj/kB=0kAB=0
65 0red φkA0
66 65 3 5 4 6 letrd φkA0C
67 1 2 5 66 fprodge0 φ0kAC
68 67 adantr φjAj/kB=00kAC
69 64 68 eqbrtrd φjAj/kB=0kABkAC
70 54 69 sylan2b φ¬kAB0kABkAC
71 44 70 pm2.61dan φkABkAC